

User 's Manual

Supervision Relay SR100

March 2019 • Version 5.00

This manual was produced using ComponentOne Doc-To-Help.™

1

L

Table of content

SUPERVISION RELAY SR100 1
SECURITY ADVICE AND WARNINGS
WARNINGS, INFORMATION AND NOTES REGARDING DESIGNATION OF PRODUCT
BEFORE SWITCHING THE DEVICE ON
HEALTH AND SAFETY
DISPOSAL
BASIC DESCRIPTION AND OPERATION
CONTENTS
DESCRIPTION OF THE SUPERVISION RELAY SR1008
ABBREVIATION/GLOSSARY
PURPOSE AND USE OF SUPERVISION RELAY SR100
CONNECTION
MOUNTING
ELECTRICAL CONNECTION FOR SUPERVISION RELAY SR10012
CONNECTION OF INPUT/OUTPUT MODULES
COMMUNICATION CONNECTION
RS23215
RS48515
CAN (CANopen)
Service USB16
SURVEY OF COMMUNICATION CONNECTION
CONNECTION OF AUX. POWER SUPPLY17
SETTINGS
MIQEN SOFTWARE
Devices management
Settings
Measurements
My Devices24
Upgrade
Software upgrading

Setting procedure	24
GENERAL SETTINGS	25
Connection	27
Communication	27
Security	31
ENERGY	32
Counters	32
INPUTS AND OUTPUTS	34
Start-up delay for outputs (s)	34
Enabled protection groups	35
Output signal	35
PROTECTION FUNCTIONS	36
Overcurrent protection function (Over Current 1 & 2) ANSI# 50 (>I, >>I)	37
Overcurrent protection function (Over Current IE 1 & 2) ANSI# 50 N/G (>IE)	38
Overcurrent protection function (Over Current Idiff 1 & 2) ANSI# 87 (>I')	39
Overvoltage protection functions (Over Voltage 1 & 2) ANSI# 59 (>U, >>U)	40
Undervoltage protection functions (Under Voltage 1 & 2) ANSI# 27 (<u, <<u)<="" td=""><td>41</td></u,>	41
Overfrequency protection functions (Over Frequency 1 & 2) ANSI# 81O (>f, >>f)	42
Underfrequency protection functions (Under Frequency 1 & 2) ANSI# 81U (<f, <<f)<="" td=""><td>43</td></f,>	43
Asymmetry protection functions: Voltage Unbalances ANSI# 47 (>Uun)	44
Asymmetry protection functions: Phase Imbalance 1&2 ANSI# 46 (>I _{im} , >>I _{im})	45
Load protection functions: Directional power 1&2 ANSI# 32 (>P, >>P)	46
Load protection functions: Power underrun 1&2 ANSI# 32R/U (<p, <<p)<="" td=""><td>47</td></p,>	47
LoM (Loss of Mains) protection functions: Phase Shift ANSI# 78(> dPhi/dt)	48
LoM (Loss of Mains) protection functions: ROCOF protection ANSI# 81R(> df/dt)	49
Protection Functions in MiQEN - Setting and Acquisition Software	50
RESET	55
MEASUREMENTS	56
ONLINE MEASUREMENTS	56
AVAILABLE CONNECTIONS	57
SUPPORTED MEASUREMENTS	58
SELECTION OF AVAILABLE QUANTITIES	58
EXPLANATION OF BASIC CONCEPTS	60
Sample factor M_V	60
Average interval MP	60
Power and energy flow	60
CALCULATION AND DISPLAY OF MEASUREMENTS	61

L

lskra°

PRESENT VALUES	61
Voltage	
Current	62
Active, reactive and apparent power	62
Power factor and power angle	62
Frequency	63
Energy counters	63
THD – Total harmonic distortion	63
Average interval for min. max. values	63
TECHNICAL DATA	64
ACCURACY	64
MEASUREMENT INPUTS	64
CONNECTION	65
Connection table	66
COMMUNICATION	66
I/O MODULES	67
SAFETY	67
MECHANICAL	67
ENVIRONMENTAL CONDITIONS	68
DIMENSIONAL DRAWING	68
APPENDICES	69
APPENDIX A	69
APPENDIX B	79
APPENDIX C	

L

SUPERVISION RELAY SR100

SECURITY ADVICE AND WARNINGS

Please read this chapter carefully and examine the equipment carefully for potential damages which might arise during transport and to become familiar with it before continue to install, energize and work with a measuring instrument.

This chapter deals with important information and warnings that should be considered for safe installation and handling with a device in order to assure its correct use and continuous operation.

Everyone using the product should become familiar with the contents of chapter »Security Advices and Warnings«.

If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

PLEASE NOTE

Installation and use of devices includes work with dangerous currents and voltages, therefore such work shall be carried out by qualified persons only. The ISKRA Company assumes no responsibility in connection with installation and use of the product. If there is any doubt, regarding installation and use of the system in which the instrument is used for measuring or protection, please contact a person who is responsible for installation of such system.

lskra®

WARNINGS, INFORMATION AND NOTES REGARDING DESIGNATION OF PRODUCT

 Used symbols:

 Image: See product documentation.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance with the EN 61010-1 standard.

 Image: Double insulation in compliance of the product with directive 2002/96/EC, as first priority, the prevention of waste electrical and electronic equipment (WEEE), and in addition, the reuse, recycling and other forms of recovery of such wastes so as to reduce the disposal of waste. It also seeks to improve the environmental performance of all operators involved in the life cycle of electrical and electronic equipment.

 Image: Double insulation in the product with European CE directives.
 Compliance of the product with European CE directives.

BEFORE SWITCHING THE DEVICE ON

Check the following before switching on the device:

- nominal voltage,
- supply voltage,
- nominal frequency,
- voltage ratio and phase sequence,
- current transformer ratio and terminals integrity,
- protection fuse for voltage inputs (recommended maximal external fuse size is 6 A),
- external switch or circuit-breaker must be included in the installation for disconnection of the devices' aux. power supply. It must be suitably located and properly marked for reliable disconnection of the device when needed,
- integrity of earth terminal,
- proper connection and voltage level of I/O modules.

🛕 WARNING

A current transformer secondary should be short circuited before connecting the device.

HEALTH AND SAFETY

The purpose of this chapter is to provide a user with information on safe installation and handling with the product in order to assure its correct use and continuous operation.

We expect that everyone using the product will be familiar with the contents of chapter »Security Advices and Warnings«.

If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

DISPOSAL

It is strongly recommended that electrical and electronic equipment is not deposit as municipal waste. The manufacturer or provider shall take waste electrical and electronic equipment free of charge. The complete procedure after lifetime should comply with the Directive 2002/96/EC about restriction on the use of certain hazardous substances in electrical and electronic equipment.

I

BASIC DESCRIPTION AND OPERATION

This chapter presents all relevant information about the instrument required to understand its purpose, applicability and basic features related to its operation.

Apart from this, it also contains navigational tips, description of used symbols and other useful information for understandable navigation through this manual.

Regarding the options of this instrument, different chapters should be considered since a particular sub variant might vary in functionality. More detailed description of device functions is given in chapters Main Features, Supported options and Functionality.

Supervision Relay SR100 is available in DIN rail mounting enclosure. Specifications of housing are specified in chapter <u>Connection – Mounting</u> on page 12.

Contents

Packaging contains the following items:

- Measuring instrument
- Quick Guide

All related documentation on this product can be found at <u>Iskra web page - https://www.iskra.eu</u>. The instrument desktop based setting software – MiQen2, together with accompanying drivers can be found on <u>Iskra web page</u> <u>- https://www.iskra.eu</u>. Due to environmental reasons, all this information is longer provided on a separate CD.

🤣 CAUTION

Please examine the equipment carefully for potential damage, which might have occurred during transport.

Description of the Supervision Relay SR100

Supervision Relay SR100 is intended for measuring and monitoring single-phase or three-phase electrical power network. It measures RMS network values and all significant deviations from the nominal values by means of fast sampling of voltage and current signals. There is an option in MiQen Settings Studio software to select also the measurements based only on positive sequence fundamental wave, which does not include harmonics measurements. This option can be found under MiQen Settings menu. With this option included, all corresponding values are replaced by IEC 61400-21 Annex C measurements. This makes Supervision Relay SR100 suitable for acquisition and validation of fast changes in the network. A built-in microcontroller calculates measured values (voltage, current, frequency, energy, power, power factor, THD phase angles and deviations) and sends these data over a reliable CANopen communication interface to the CAN master devices.

Lack of information regarding supplied voltage quality can lead to unexplained production problems and malfunction or can even damage equipment being used during factory production process. Therefore Supervision Relay SR100 can be used to detect predefined faults. With measuring 13 different network deviations, Supervision Relay SR100 could be used as simple but efficient supervision relay. Supervision Relay SR100 could be used as simple but efficient supervision relay. Supervision Relay SR100 is delivered un-configured for customer configuration with user friendly setting software MiQEN. Supervision Relay SR100 supports standard serial communication RS232/RS485 with speed up to 115200 baud and CANopen communication for speeds up to 1 Mbit/s which is perfect for integration into large systems. Additional USB 2.0 interface can only be used for a fast set-up without the need for auxiliary power supply. This interface is provided with only BASIC insulation and can be used ONLY unconnected to power inputs.

Appearance

Communication ports and LED indicators

Serial communication can be connected by using screw-in connector (RS232 or RS485). CANopen communication is also connected using screw-in connector. USB can be connected through USB-mini type connector at the bottom of Supervision Relay SR100.

LED indicator is intended for POWER ON signaling (red LED).

🛕 WARNING

USB communication port is provided with only BASIC insulation and can ONLY be used unconnected to aux. supply AND power inputs!

I/O modules

Four I/O module slots are intended for electromechanical relay output modules.

Universal auxiliary supply

Auxiliary supply is connected by two screw-in connectors. For safety purposes it is important that all wires are firmly fastened. Auxiliary supply is wide range (20 ... 300 V DC; 48 ... 276 V AC).

Voltage inputs

Each voltage input is connected to measuring circuit through input resistor chain (3.3 M Ω per phase). Maximum value of input voltage is 600 V_{L-N} (1000 V_{L-L}).

Current inputs

Each current input is connected to measuring circuit through current transformer (0.01 Ω per phase). Maximum allowed thermal value of input current is 12.5 A (cont.).

Abbreviation/Glossary

Abbreviations are explained within the text where they appear the first time. Most common abbreviations and expressions are explained in the following table:

Term	Explanation				
RMS	Root Mean Square value				
MODBUS / DNP3	Industrial protocol for data transmission				
MiQen	tting Software for ISKRA instruments				
AC	Alternating voltage				
PA total	Power Angle calculated from total active and apparent power				
PAphase	Angle between fundamental phase voltage and phase current				
PF _{phase}	Power factor, calculated from apparent and active power (affected by harmonics)				
THD (U, I)	Total harmonic distortion				
MD	Max. Demand; Measurement of average values in time interval				
FFT graphs	Graphical display of presence of harmonics				
Harmonic voltage –	Sine voltage with frequency equal to integer multiple of basic frequency				
harmonic					
Sample factor	Defines a number of periods for measuring calculation on the basis of measured				
	frequency				
M _p – Average interval	Defines frequency of refreshing displayed measurements				
Hysteresis [%]	Percentage specifies increase or decrease of a measurement from a certain limit				
	after exceeding it.				
RO	Relay output module				

List of common abbreviations and expressions

Purpose and use of Supervision Relay SR100

Supervision Relay SR100 is used for measuring and monitoring single-phase or three-phase values and detecting predefined faults. With measuring 13 different network deviations, Supervision Relay SR100 can be used as simple but efficient supervision relay. Supervision Relay SR100 is delivered un-configured for customer configuration with user friendly setting software MiQEN. Supervision Relay SR100 supports standard serial communication RS232/RS485 with speed up to 115200 baud and CANopen communication for speeds up to 1 Mbit/s which is perfect for integration into large systems.

Additional USB 2.0 interface can only be used for a fast set-up without the need for auxiliary power supply. This interface is provided with only BASIC insulation and can be used ONLY unconnected to power inputs.

Supported measurements

	Basic measurements		
	Voltage U_1 , U_2 , U_3 and U^{\sim}		
	Current I ₁ , I ₂ , I ₃ , I _n , I _t and I _a		
	Active power P ₁ , P ₂ , P ₃ , and P _t		
	Reactive power Q ₁ , Q ₂ , Q ₃ , and Q _t		
2	Apparent power S ₁ , S ₂ , S ₃ , and S _t		
Phase	Power factor PF ₁ , PF ₂ , PF ₃ and PF [~]		
	Power angle ϕ_1 , ϕ_2 , ϕ_3 and ϕ^{\sim}		
	THD of phase voltage Uf1, Uf2 and Uf3		
	THD of power angle I ₁ , I ₂ and I ₃		
	Phase Shift L ₁ \L ₂ \L ₃		
	Phase-to-phase voltage U ₁₂ , U ₂₃ , U ₃₁		
	Average phase-to-phase voltage U _{ff}		
Phase-to-phase	Phase-to-phase angle φ ₁₂ , φ ₂₃ , φ ₃₁		
	THD of phase-to-phase voltage		
	Counter 1		
	Counter 2		
Energy	Counter 3		
	Counter 4		
	Active tariff		
	Relay output 1		
1	Relay output 2		
inputs and outputs	Relay output 3		
	Relay output 4		
	Other measurements		
	Phase current 11, 12, 13		
	Active Power Total (Pt) - (positive)		
MD values	Active Power Total (Pt) - (negative)		
	Reactive Power Total (Qt) - L		
	Reactive Power Total (Qt) - C		
	Apparent Power Total (St)		
	Voltage Unbalances U ₀		
	Phase imbalance		
Measurements	Frequency		
	ROCOF df/dt		
	Internal temperature		

CONNECTION

This chapter deals with the instructions for measuring instrument connection. Both the use and connection of the device includes handling with dangerous currents and voltages. Only qualified personnel using an appropriate equipment shall therefore perform connections. ISKRA d.d. does not take any responsibility regarding the use and connection. If any doubt occurs regarding connection and use in the system which device is intended for, please contact a person who is responsible for such installations.

A person qualified for installation and connection of a device should be familiar with all necessary precaution measures described in this document prior to its connection.

Before use please check the following:

- Nominal voltage (U_{P-Pmax} = 1000V_{ACrms}; U_{P-Nmax} = 600V_{ACrms}),
- Supply voltage (rated value),
- Nominal frequency,
- Voltage ratio and phase sequence,
- Current transformer ratio and terminals integrity,
- Protection fuse for voltage inputs (recommended maximal external fuse size is 6 A)
- External switch or circuit-breaker must be included in the installation for disconnection of the devices' aux. power supply. It must be suitably located and properly marked for reliable disconnection of the device when needed. See CAUTION below.
- Integrity of earth terminal
- Proper connection and voltage level of I/O modules

🛕 WARNING

Wrong or incomplete connection of voltage or other terminals can cause non-operation or damage to the device.

🤣 CAUTION

Aux. Supply inrush current can be as high as 20A for short period of time (<1 ms). Please choose an appropriate MCB for disconnection of aux. supply.

PLEASE NOTE

After connection, settings have to be performed via communication using MiQen software.

Mounting

Supervision Relay SR100 is designed for DIN rail mounting. It should be mounted on a 35 mm DIN rail by means of two plastic fasteners. Before installation fasteners should be in open position (pulled). After device is in place, fasteners are locked (pushed) to close position.

Electrical connection for Supervision Relay SR100

Voltage inputs of a device can be connected directly to low-voltage network or via a voltage measuring transformer to a high-voltage network.

Current inputs of measuring transducer can be connected directly to low-voltage network or via a corresponding current transformer.

Choose corresponding connection from the figures below and connect corresponding voltages and currents. Information on electrical consumption of current and voltage inputs is given in a chapter <u>Technical Data –</u> <u>Measuring inputs</u> on page 64.

CAUTION

For accurate operation and to avoid measuring signal crosstalk it is important to avoid installation of voltage measuring wires close to current measuring transformers.

PLEASE NOTE

For proper connection wire diameters and other wiring requirements see chapter <u>*Technical data – Connection</u>* on page 65.</u>

System/ connection

Terminal assignment

System/ connection	Terminal assignment		
Connection 3b (1W3) Three phase, three wire connection with balanced load	$ \begin{array}{c} 2 & 5 & 8 & 11 & 1 & 3 & 4 & 6 & 7 & 9 \\ $		
Connection 3u (2W3) Three phase, three wire connection with unbalanced load	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Direct connection 3u(2W3) Three phase, three wire direct connection with unbalanced load	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Connection 4b (1W4) Three phase, four wire connection with balanced load	$ \begin{array}{c} 2 \\ 5 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		
Connection 4u (3W4) Three phase, four wire connection with unbalanced load	$ \begin{array}{c} 2 & 5 & 8 & 11 & 1 & 3 & 4 & 6 & 7 & 9 \\ & & & & & & & & \\ & & & & & & & & \\ & & & & $		

l

System/ connection

Terminal assignment

Connection of input/output modules

🛕 WARNING

Check the module features that are specified on the label, before connecting module contacts. Wrong connection can cause damage or destruction of module and/or device.

Connect module contacts as specified on the label. Examples of labels are given below and describe modules built in the device. Information on electrical properties of modules is given in a chapter <u>Technical Data – I/O</u> <u>modules</u> on page 67.

I/O module 1

I/O 1	
Relay output 48 V DC/AC 1000 mA -/~ ↓ 15 -/~ ↓ 16	Electromechanical relay output module. (Example of alarm module as I/O module 1)

Communication connection

Supervision Relay SR100 is equipped with one standard (COM1) RS232 / RS485 / CANopen communication port and one service communication port (USB).

🛕 WARNING

USB communication port is provided with only BASIC insulation and can ONLY be used unconnected to aux. supply AND power inputs!

Connect a communication line by means of corresponding terminals. Connection information is stated on the instrument label. Connector terminals are marked on the label on the upper side of the instrument. USB connector is positioned on the bottom side of an instrument under removable plastic cover. Instrument will establish USB connection with PC approx. 3 seconds after physical connection to USB port. More detailed information about communication is given in chapter <u>Communication</u> on page 27.

RS232

RS232 communication is intended for direct connection of the Device to the personal computer. For proper operation it is necessary to assure the corresponding connection of individual terminals (see table: <u>Survey of communication connection</u> on page 16).

RS485

RS485 communication is intended for connection of multiple devices to a network where devices with RS485 communication are connected to a common communication interface. We suggest using one of the *ISKRA, d.d.* communication interfaces! For proper operation it is necessary to assure the corresponding connection of individual terminals. See table: *Survey of communication connection* page 16.

CAN (CANopen)

CANopen communication is intended for connection of multiple devices to a fieldbus network systems where Supervision Relay SR100 is connected as slave device to the master device. *ISKRA* has some project examples for different master devices as Beckhoff PLC, Bachmann PLC, ... and the User could request for them. Supervision Relay SR100 implements CANopen communication protocol according to CiA 401 specification and implements most of the CANopen NMT standard commands. CAN connector emphasis CAN-L, CAN-H and also CAN-GND signal which is not necessary to be used. See table: Survey of communication connection page 16. For proper operation it is only necessary to assure the corresponding external termination of CAN-L/CAN-H lines with 120 Ohms resistance. Also 120 Ohms termination is highly recommended on the master side of the communication path. More information about the CANopen protocol could be found in the chapter <u>Settings – General settings – communication – CANopen</u> on page 28.

Service USB

Additionally, Supervision Relay SR100 has a USB communication port, located on the bottom under small circular plastic cover. It is intended for settings ONLY and requires NO auxiliary power supply. When connected to this communication port Supervision Relay SR100 is powered by USB.

The USB port should not remain open. It should be closed immediately after the initial setting through USB port was done and should remain closed during all time of storing & operation. In case the customer has not put the cover on the USB after the initial setting was done, before putting to store, mounting the unit on the DIN rail or the unit operates without USB cover the warranty is void.

Also unit returned back without USB cover or with clear indications that it was stored or operated without USB cover on the USB port it will be treated as out of the warranty.

🛕 WARNING

USB communication port is provided with only BASIC insulation and can ONLY be used unconnected to aux. supply AND power inputs!

COM Rx 23 RS232 ⊥ 24 Tx 25	COM1 serial communication port (RS232)
COM A 23 RS485 NC 24 B 25	COM1 serial communication port (RS485)
COM CAN-H 23 CANopen NC 24 CAN-L 25	CAN (CANopen) communication port
Mini-USB Type A/B	SERVICE communication port (USB)

Survey of communication connection

Connector	Terminals	Position	RS232	RS485	CAN (CANopen)
Screw terminals	coM ⊘ ⊘ ⊘	23	Rx	А	CAN-H
		24	GND	NC	CAN-GND
		25	Тх	В	CAN-L
USB-mini B	Mini-USB Type A/B	Standard USB 2.0 compatible cable recommended (Type mini B plug)			

Connection of aux. Power supply

Device can be equipped with either of two types of universal (AC/DC) switching power supply.

Auxiliary Power Supply:

20 ... 300 V DC 48 ... 276 V AC 45 ... 65 Hz

Regarding power supply voltage specification on the label, choose and connect the power supply voltage:

AUX		
20300 V DC 48276 V AC	+/~	13
4565 Hz < 8 VA	-/~	14

Connection of auxiliary power supply type to terminals 13 and 14.

🤣 CAUTION

Aux. supply inrush current can be as high as 20A for short period of time (<1 ms). Please choose an appropriate MCB for connection of aux. supply.

SETTINGS

Settings of the device can be performed via communication with MiQen software. Complete setting of the device can be done using MiQen software.

MiQen software

MiQen software is a tool for a complete programming and monitoring of ISKRA measuring instruments. Remote operation is possible by means of serial (RS485 / RS232) or USB. A user-friendly interface consists of six segments: connection, settings, measurements, analysis, my devices and upgrades. These segments are easily accessed by means of six icons on the left side:

Latest version of MiQen software can be downloaded from ISKRA d.d. website www.iskra.eu.

A PLEASE NOTE

MiQen has very intuitive help system. All functions and settings are described in Info window on the bottom of MiQen window. In MiQen Help file, detailed instructions about software usage, connection and communication with different type of devices, driver installation,... are described.

Devices management

🖙 MiQen 2.1 - Setti	ing Studio		
<u>File T</u> ools	<u>V</u> iew <u>H</u> elp		
🛛 🖬 🗟 💕 • 🖄	🖬 🖫 🍙 🔝 🔖 🗖 🔅]
Refresh	Address: 33	🔿 Go to: 🗸	
	😻 Connection		
Connection	Selected device	Communication port	Searching
	Туре:	Port 10.120.4.212	
6	Serial number:	Setting: 10001	Scan the network
Settings	#0	the second second	
	Add to My devices	Change settings	🔇 Browse ethernet devic
Measurements			
67%s			
Analysis			
Analysis			
My Devices			
_			
Upgrades			

MiQen Device Management window

With MiQen it is very easy to manage devices. If dealing with the same device that has been accessed before, it can be easily selected from a favorites' line.

🤿 Go to: 🔻		-
	Device #33, IP Address: 10.120.4.212, Port: 10001, Modbus TCP, Timeout 10s	
	Device #33, COM1 - USB, Setting: 115200,None,8,1	
	Device #33, COM18 - USB, Setting: 115200,None,8,1	

This way is Communication port set automatically as it was during last access.

To communicate with new device follow below instructions:

Connect a device to a communication interface (Depending on type of device):

- Directly to a PC using RS232 cable
- To comm. adapter RS485 / RS232
- Directly to a PC using USB cable

Set Communication port parameters

Under Communication port, current communication parameters are displayed. To change those parameters click

on ^W Change settings</sup> button. A Communication port window opens with settings for different communication interfaces.

Communication port	x
Serial Ethemet USB IR	LPR Flag
IP Address:	10.120.4.212
IP Port:	10001
Protocol:	Modbus TCP -
Response timeout (sec):	10
	OK Cancel

To activate desired communication select proper communication tab, set communication parameters and confirm selection with OK button.

PLEASE NOTE

When device with USB communication is connected to a computer for the first time, device driver will be installed automatically. If installation is correct device presents itself in an operating system -> Device manager - Ports (COM and LPT) as a Measuring device. If device is not recognized automatically or wrong driver is installed, valid installation drivers are located in MiQen installation directory, subdirectory Drivers.

With this driver installed, USB is redirected to a serial port, which should be selected when using MiQen software.

For more information regarding communication parameters, please see chapter <u>Communications</u> on page 27.

Set device Modbus address number

Each device connected to a network has its unique Modbus address number. In order communicate with that device an appropriate address number should be set.

Factory default Modbus address for all devices is 33. If devices are connected in to communication network, all should have the same communication parameters, but each of them should have its own unique address.

Start communicating with a device

Click on Network Click on Refresh button and devices information will be displayed:

Selected device

Type: MC784, Soft. Ver.: 0.48

Serial number: M8000000

When devices are connected to a network and a certain device is required, it is possible to browse a network for devices. For this purpose, choose:

- Scan the network when device is connected to a RS485/RS232 bus
- Browse Ethernet devices when device is connected to the Ethernet

Searching

Scan the network

Browse ethernet devices

Settings

Programming devices can be performed ONLINE when device is connected to aux. power supply and is communicating with MiQen. When device is not connected, it is possible to adjust settings OFFLINE.

Online programming

After communication with a device is established, choose icon Settings from a list of MiQen functions on a left side.

MiQen Device Setting window:

📊 MiQen 2.1 - Sett	ing Studio		
File Tools	View Help		
📫 🔜 😂 - 🛤			
Refresh	Address: 33	🔿 Go to: 🗸	
	🧃 Settings	,	C:\Users\Deian\Desktop\SR100-1.msf
		Setting	Value
Connection	🖨 📸 General	Reset energy counter E1	No
	💥 Connection	Reset energy counter E2	No
		Reset energy counter E3	No
	E Eperativ	Reset energy counter E4	No
Settings	Counters	Reset MD values	No
Settings	P- Protection	Reset last period MD	No
	Current	Alarm relay [1] Off	No
	😨 Voltage	Alarm relay [2] Off	No
	🤓 Frequency	Alarm relay [3] Off	No
weasurements	💟 Asymmetry	Alarm relay [4] Off	No
	💟 Load	Reset alarm statistics	No
Analysis My Devices Upgrades	Control Contro	Reset energy counter E1 Set selected counter value to zero. The setting could no	at be saved into settings file!
	-		

Choose Read settings 🔲 button to display all devices settings and begin adjusting them according to project requirement.

A PLEASE NOTE

When finished programming, changes should be confirmed by pressing Download settings 🖾 button in MiQen menu bar or with a mouse right click menu.

PLEASE NOTE

When finished programming, all settings can be saved in a setting file (*.msf file). This way it is possible to archive settings in combination with a date. It is also possible to use saved settings for offline programming or to program other devices with same settings. For more information, see OFFLINE programming.

Offline programming

When device is not physically present or is unable to communicate, it is still possible to perform OFFLINE programming. From MiQen Device Setting window, choose Open setting file button. From a list of *.msf files choose either previously stored file (a setting file, which has been used for another device and stored) or a file SR100.msf, which holds default settings for this device. When confirmed all device settings are displayed similar as with ONLINE programming.

When finished programming, all settings can be saved in a setting file with a meaningful name (e.g. *SR100_location_date*.msf).

Settings are stored in the directory setting using two recording modes:

- With a type designation and a sequence number from 1 to 9
- With an device serial number

CAUTION

SR100.msf file or any other original device setting file should not be modified as it contains device default settings. Please save setting file under another name before adjusting it with your own project requirements.

Measurements

Measurements can be seen ONLINE when device is connected to aux. power supply and is communicating with MiQen. When device is not connected, it is possible to see OFFLINE measurements simulation. The latter is useful for presentations and visualization of measurements without presence of actual device.

In ONLINE mode, all supported measurements and protection functions can be seen in real time in a Table view. Presentation in graphical form is also supported.

📅 MiQen 2.1 - Sett	ting Studio						
<u>F</u> ile <u>T</u> ools	<u>V</u> iew <u>H</u> elp						
📫 🔚 💕 - 🖾	i d G (6 (10) 🗞 🗖 🤇	> 3					
🍓 Refresh	Address: 33 🛄 iMC784	🤿 G	o to: • Device #33, IP Ad	ddress: 10.120.4.187, Port	: 10001, Modbus TCP, Ti	meout 10s	
	Measurements SR100 - Simulation						
	Phase measurements	L1	L2	L3	Total	Others	
Connection	Voltage	229,44 V	228,86 V	227,47 V		U~ = 228,59 V	
	Current	175,21 A	297,66 A	288,28 A	761,16 A	I~ = 253,72 A	
/1B	Real Power	40,01 kW	67,96 kW	62,70 kW	170,68 kW	Inc = 2,83 A	
1	Reactive Power	3,79 kvar	3,30 kvar	19,13 kvar	26,23 kvar		
Settings	Apparent Power	40,20 kVA	68,12 kVA	65,57 kVA	173,90 kVA		
	Power Factor	0,9955 Ind	0,9976 Ind	0,9562 Ind	0,9815 Ind		
	Power Angle	3,33 °	0,86 °	16,73 °	8,73 °		
	THD-Up	2,67 %	2,76 %	2,64 %			
Measurements	THD-I	7,99 %	6,05 %	4,74 %			
Wiedsurements	Phase Shift	0,00 °	0,00 °	0,00 °			
	Phase to phase measurements	L1 - L2	L2 - L3	L3 - L1	Total	Others	
1 mil	Phase to phase voltage	397,96 V	394,80 V	395,08 V		Upp~ = 395,95 V	
142/11	Phase Angle	120,50 °	119,80 °	119,68 °			
Analysis	THD-Upp	2,75 %	2,64 %	2,62 %			
	Energy counters	Counter E1 (Exp)	Counter E2 (Exp)	Counter E3 (Imp)	Counter E4 (Imp)	Active tariff	
	Energy	23.347,23 kWh	1.441,18 kvarh	995,33 kWh	28.481,38 kvarh	1	
	Inputs and outputs	[1] Analogue output	[2] Analogue output	[3] Relay output	[4] Relay output		
My Devices	Value	16,39 mA	9,77 mA	On	On		
	Other measurements	Value					
	Voltage Unbalances Uo	0,49 %					
50	Phase Imbalance	0,00 %					
Upgrades	Frequency	49,998 Hz					
	ROCOF df/dt	0,00 Hz/s					
	Internal Temperature	18,0 °C					
	Measurements Protection	Recorder	·	·	·		

Online measurements in Table view

Online measurements in graphical form – phasor diagram and daily total active power consumption histogram

Different measuring data can be accessed by means of tabs (Measurements and Protection) in the lower part of MiQen window.

For further processing of real time measuring results, it is possible to set a recorder (Recorder button) on active device that will record and save selected measurements to MS Excel .csv file format. Data can then be analyzed and processed in any program that supports files in CSV format.

Measurements Reco	order	×
Recorder Filter		
File name:	MC014635.csv	
Path:	C:\MiQen\Data	
File Type:	Excel (*.csv)	•
Data Type:	Values & Units	•
Cart Record	ding	
Stop Recon	ding 📴	Close
Status: Stopped		Recording time: 0:00:00

Window for setting local database recording parameters

🙊 Iskra

My Devices

In My Devices user can store connections to devices that are used more often. Each device can be assigned to user defined group and equipped with user defined description and location for easier recognition. By selecting device from the list, access to device settings and downloaded and recorded files is much easier.

Upgrade

In Upgrades section latest software, both for MiQen and ISKRA measuring devices can be found. The latest version should always be used to assure full functionality. Manual or automatic checking for upgrades is available. Internet connection is required.

List of available updates is divided in to various sections for easier navigation. Each section is named by software or family of devices (MiQen software, Measuring centers', Measuring transducers...). History file with data about corrections and added functionality is also available.

Software upgrading

PLEASE NOTE

MiQen cannot be used for execution of firmware upgrades of devices. It only informs that new version is available and offers link to download it from the server. Software for execution of firmware upgrades is included in downloaded zip file together with upgrade file, upgrade procedure description and revision history.

Setting procedure

Before configuring device with MiQen software, current settings should be read first. Reading is available either via communication or from a file (stored on a local disk). A setting structure that is similar to a file structure in an explorer is displayed in the left part of the MiQen setting window. Available settings of that segment are displayed in the right part by clicking any of the stated parameters.

PLEASE NOTE

Some settings may not be available due to unsupported measurements and/or functions that depend on the device type.

General Settings

General settings are essential for measuring instruments. They are divided into three additional sublevels (Connection, Communication and Security).

Description and Location

Description is intended for easier recognition of a certain unit in a network. It is especially used for identification of the device on which measurements are performed.

Average interval

The averaging interval defines a refresh rate of measurements on display, communication. It is used also as averaging interval for minimum and maximum values accessible on communication and actual alarm value calculation for alarm triggering.

Average interval for measurements

The averaging interval defines a refresh rate of measurements on display and communication. It also defines response time for alarms set to Normal response (see chapter Alarms).

- Shorter average interval means better resolution in minimum and maximum value in to recorded period detection. Also data presented in display will refresh faster.
- Longer average interval means lower minimum and maximum value in recorded period detection and slower alarm response (alarm response can be delayed also with Compare time delay setting See chapter Alarms). Also data on display will refresh slower.

Interval can be set from 8 to 256 periods. Default value is 64 periods.

A PLEASE NOTE

This setting applies only for min. and max. values displayed on LCD and accessible on communication. These values are not used for storing into internal recorder.

Temperature unit

Choose a unit for temperature display. Degrees Celsius or degrees Fahrenheit are available.

Starting Current for PF and PA (mA)

All measuring inputs are influenced by noise of various frequencies. It is more or less constant and its influence to the accuracy is increased by decreasing measuring signals. It is present also when measuring signals are not present or are very low. It causes very sporadic measurements.

This setting defines the lowest current that allows regular calculation of Power Factor (PF) and Power Angle (PA). The value for starting current should be set according to conditions in a system (level of noise, random current fluctuation ...)

Starting current for all power (mA)

Noise is limited with a starting current also at measurements and calculations of powers. The value for starting current should be set according to conditions in a system (level of noise, random current fluctuation ...)

Starting voltage for all powers (V)

Noise is limited with a starting voltage also at measurements and calculations of powers. Until voltage reaches user defined starting voltage threshold, all powers are set to 0. Using three wire electrical connections, virtual phase voltage is used in calculations.

Starting voltage for SYNC (V)

∞ Iskra

Device needs to synchronize its sampling with measuring signals period to accurately determine its frequency. For that purpose, input signal has to large enough to be distinguished from a noise.

If all phase voltages are smaller than this (noise limit) setting, instrument uses current inputs for synchronization. If also all phase currents are smaller than Starting current for PF and PA setting, synchronization is not possible and frequency displayed is 0. The value for starting voltage should be set according to conditions in a system (level of noise, random voltage fluctuation ...)

Reactive power & energy calculations

Harmonic distortion can significantly influence reactive power and energy calculation. In absence of harmonic distortion both described methods will offer the same result. In reality harmonics are always present. Therefore it is up to project requirements, which method is applicable.

User can select between two different principles of reactive power and energy calculation:

Standard method:

With this method a reactive power and energy are calculated based on assumption that all power (energy), which is not active, is reactive.

$$Q^2 = S^2 - P^2$$

This means also that all higher harmonics (out of phase with base harmonic) will be measured as reactive power (energy).

Displacement method:

With this method, reactive power (energy) is calculated by multiplication of voltage samples and by 90° displaced current samples.

$Q = U \times I | +90^{\circ}$

With this method, reactive power (energy) represents only true reactive component of apparent power (energy).

Measurements according to EN 61400-21

Measurements based only on positive sequence fundamental wave, which is the one that produces torque in the rotating machines. Active power, reactive power, active current, reactive current and voltage are calculated according to requirements in EN61400-21. The negative sequence and the harmonics only cause losses.

Connection

G CAUTION

Settings of connections shall reflect actual state otherwise measurements could not be valid.

Connection mode

When connection is selected, load connection and the supported measurements are defined.

Setting of current and voltage ratios

Before setting current and voltage ratios it is necessary to be familiar with the conditions in which device will be used. All other measurements and calculations depend on these settings. Aux CT transformer ratios can be set separately from phase CT ratios since Aux CT could differ from phase CTs.

Range of CT and VT ratios:

Settings range	VT primary	VT secondary	CT, Aux CT primary	CT, Aux CT secondary
Max value	1638,3 kV	13383 V	1638,3 kA	13383 A
Min value	0,1 V	0,1 V	0,1 A	0,1 A

Energy flow direction

This setting allows manual change of energy flow direction (IMPORT to EXPORT or vice versa) in readings tab. It has no influence on readings sent to communication or to memory.

CT connection

If this setting is set to REVERSED it has the same influence as if CT's would be reversely connected. All power readings will also change its sign.

This setting is useful to correct wrong CT connections.

Communication

Communication parameters (COM1)

Supervision Relay SR100 has one galvanically separated communication port (COM1), which can be equipped with RS232, RS485, CAN (CANopen) or left open (to be specified with order).

Different configurations are possible (to be specified with order):

Configuration	СОМ
Without	Service USB
RS232	RS232 + Service USB
RS485	RS485 + Service USB
CANopen	CANopen + Service USB

Serial communication:	RS232	RS485	CANopen	
Connection type	Direct	Network	Network	
Connection terminals		Screw terminals		
Function	Settings, measur	ements and FW upgrade	Measurements	
Insulation	Protection class II, 3.3 kV _{ACRMS} 1 min			
Max. connection length	3 m 2000 m (at CAN depends on baudrate)			
Transfer mode	Asy	Synchronous		
Protocol	M	CAN open		
Transfer rate	2.4 kBau	20 to 1000 kBaud		
Number of nodes	/	≤ 32	≤ 127	

CANopen

CANopen is a high-level communication protocol and device profile specification that is based on the CAN (Controller Area Network) protocol. The protocol was developed for embedded networking applications, such as in-vehicle networks. The CANopen umbrella covers a network programming framework, device descriptions, interface definitions and application profiles. CANopen provides a protocol which standardizes communication between devices and applications from different manufacturers. It has been used in a wide range of industries, with highlights in automation and motion applications. *ISKRA* Supervision Relay SR100 implements all standards CANopen features according to the CiA 401 specification. The bottom NMT telegrams are supported:

Specification of ISKRA CANopen message syntax - COB-Ids (SR100)						
Broadcast object	Broadcast objects of the CANopen Predefined Master/Slave Connection Set					
Object Function code (ID-bits 10-7) COB-ID Communication parameters at OD index Comm				Comments		
NMT Module Control	0000	000h	Start/stop node, Enter Pre-operational, Reset node, Reset communication			
SYNC	0001	080h	1005h, 1006h, 1007h			

Peer-to-Peer objects of the CANopen Predefined Master/Slave Connection Set					
Object	Function code		Communication parameters		
Object	(ID-bits 10-7)		at OD index		
EMERGENCY	0001	081h - OFFh	1024h, 1015h	EMCY at generic error	
PDO 1		181h -			
(transmit) -	0011	1FFh	1800h	Data structure Multiplexed	
TPDO1					
PDO 3		381h -			
(transmit) -	0111	3FFh	3FFh	1802h FFh	Data structure Multiplexed
TPDO3					
SDO		581h -			
(transmit/serve	1011	5FFh	1200h	Access of settings and data	
r)					
SDO	1100	601h -	1200h	Access of settings and data	
(receive/client)	1100	67Fh	120011	Access of settings and data	
NMT Heartheat	1110	700h	(bott-up, stopped,	Sent from SR100 as Producer	
NIVIT Heartbeat 1110 7000		operational, pre-operational)	to Master (Consumer)		

Object Dictionary

One of the central themes of CANopen is the object dictionary (OD), which is essentially a table that stores configuration and process data. It is a requirement for all CANopen devices to implement an object dictionary. ISKRA Supervision Relay SR100 Object Dictionary is appended in Table 1 inside the <u>Appendix B</u> on page 79.

CANopen Message Format

The message format for a CANopen frame is based on the CAN frame format. In the CAN protocol, the data is transferred in frames consisting of an 11-bit or 29-bit CAN-ID, control bits such as the remote transfer bit (RTR), start bit and 4-bit data length field, and 0 to 8 bytes of data. The COB-ID, commonly referred to in CANopen, consists of the CAN-ID and the control bits. In CANopen, the 11-bit CAN ID is split into two parts: a 4-bit function code and a 7-bit CANopen node ID. The 7-bit size limitation restricts the amount of devices on a CANopen network to 127 nodes.

CANopen Frame Format (bits shown except for data field

Service Data Objects (SDOs)

The CANopen protocol also specifies that each node on the network must implement a server that handles read/write requests to its object dictionary. This allows for a CANopen master to act as a client to that server. The mechanism for direct access (read/write) to the server's object dictionary is the Service Data Object (SDO). The node whose object dictionary is accessed is referred to as the SDO server, and the node grabbing the data is referred to as the SDO client. The transfer is always started by the SDO client.

Process Data Objects (PDOs)

Process data represents data that can be changing in time, such as the inputs (i.e. sensors) and outputs (i.e. motor drives) of the node controller. *ISKRA* Supervision Relay SR100 uses PDOs as the basic mechanism to transfer measuring data to the Master. Measuring data are also stored in the object dictionary and could be accessed over a SDO requests. There are two types of PDOs: transfer PDOs (TPDOs) and receive PDOs (RPDOs). A TPDO is the data coming from the node (produced) and a RPDO is the data coming to the node (consumed). In addition, there are two types of parameters for a PDO: the configuration parameters and the mapping parameters. The section of the object dictionary reserved for PDO configuration parameters starts at address 1800h and the section reserved for mapping parameters starts at address 1A00h. *ISKRA* Supervision Relay SR100 uses TPDO1 and TPDO3 telegrams which are configured for Synchronous/Cyclic transmission according to received SYNC NMT messages from the Master/Producer. To increase the data efficiency *ISKRA* Supervision Relay SR100 uses multiplexed structure of the data being transmitted inside the TPDO 8-byte data field. The Multiplex data structure is clarified in pictures bellow.

BYTE 0	BYTE 1	BYTE 2	BYTE 3	BYTE 4	BYTE 5	BYTE 6	BYTE 7
MUX Index	Data byte	Not used					

Data being transferred inside the TPDO1 are of type 16-bit INTEGER, thus every TPDO1 it's caring 3 measured values/data. The first byte (BYTE 0) inside the data structure of the multiplexed TPDO1/3 is always sequential index of the telegram being transferred, thus the last byte (BYTE 7) could not be used in the data caring process and must be ignored at the Master side. Data which are transferred inside the TPDO3 are of 32-bit FLOAT type and also 16-bit INTEGER type and similar as in TPDO1 utilizes BYTES 1-6, where BYTE 7 must be ignored. TPDO1 messages are sent by default by every SYNC message being received from the Master and the TPDO3 messages are sent by every 10-th SYNC message by default. More information about the detailed TPDO1 and TPDO3 data structure could be found in the <u>Appendix B</u> on page 79.

Guarding and Heartbeats

The CANopen specification requires that nodes must use some method to check whether a node is "alive" or not. They are two methods available: node guarding and heartbeats, with the latter being the preferred method. Thus Supervision Relay SR100 prefer Heartbeat method because is more effective for the Master side. In the heartbeat protocol, Supervision Relay SR100 node periodically sends out a heartbeat message which lets the CANopen master or the Heartbeat Consumer, know that the node is still alive. If a heartbeat message does not arrive within a certain period of time, the master can take a specific action. Such an action might be to reset the node or to report an error to an operator. The heartbeat message is identified by a CAN-ID of 0x700 + the node ID. When a Supervision Relay SR100 boots up its first Heartbeat message It's Boot-up message with data byte value 0. After that each Heartbeat message contains the following mode of Supervision Relay SR100 operation:

Byte 0 value	Meaning
0	Boot-up
4	Stopped
5	Operational
127	Pre-operational

Serial communication

Communication parameters (only for main communication port COM1), which are important for the operation in RS485 network or connections with PC via RS232 communication.

Factory settings for serial communication are:

MODBUS Address	#33	address range is 1 to 247
Comm. speed	115200	speed range is 2400 to 115200
Parity	none	
data bits	8	
stop bits	2	

Service USB Communication

Has no setting. Device is automatically recognized in Windows environment if device driver has been correctly installed. For more detailed information how to handle device with USB communication use Help section in MiQen software.

A PLEASE NOTE

USB communication port is provided with only BASIC insulation and can ONLY be used unconnected to aux. supply AND power inputs!

Service USB is intended only for parameterization of the meter and is not galvanic separated. Advantage is that in this case meter does not need a power supply to communicate. Communication via service port is time limited.

Security

Settings parameters are divided into four groups regarding security level: PLO >password level 0), PL1 >password level 1) and PL2 >password level 2).

Password - Level 0 >PLO)

Password is not required. Available settings:

language

- contrast and
- LCD back light.

Password - Level 1 >PL1)

Password for first level is required. Available settings:

- RTC settings
- Energy meters reset
- Max. Demand reset
- Active tariff setting

Password - Level 2 >PL2)

Password for second level is required. Available settings:

• All settings are available

Password lock time >min)

Defines the time in minutes for the instrument to activate password protection. Enter value 0 if you want to use manual password activation.

Password setting

A password consists of four letters taken from the British alphabet from A to Z. A password of the first >PL1) and the second >PL2) level is entered, and time of automatic activation is set.

Password modification

A password is optionally modified; however, only that password can be modified to which the access is unlocked at the moment.

Password disabling

A password is disabled by setting the "AAAA" password.

A PLEASE NOTE

A factory set password is "AAAA" at both access levels >L1 and L2). This password does not limit access.

Energy

🛕 WARNING

Before modification, all energy counters should be read with MiQen software to assure data consistency for the past.

After modification of energy parameters, the energy meters (counters) should be reset. All recorded measurements from this point back might have wrong values so they should not be transferred to any system for data acquisition and analysis. Data stored before modification should be used for this purpose.

Active Tariff

When active tariff is set, one of the tariffs is defined as active; switching between tariffs is done either with a tariff clock or a tariff input. For the operation of the tariff clock other parameters of the tariff clock that are accessible only via communication must be set correctly.

Common Energy Counter Resolution

Common energy exponent defines minimal energy that can be displayed on the energy counter. A common energy exponent also influences setting of impulses for pulse output or alarm output functioning as an energy meter.

Define common energy exponent as recommended in table below, where *Individual counter Resolution* is at default value 10. Values of primary voltage and current determine proper Common energy exponent.

Current Voltage	1 A	5 A	50 A	100 A	1000 A
110 V	100 mWh	1 Wh	10 Wh	10 Wh	100 Wh
230 V	1 Wh	1 Wh	10 Wh	100 Wh	1 kWh
1000 V	1 Wh	10 Wh	100 Wh	1 kWh	10 kWh
30 kV	100 Wh	100 Wh	1 kWh	10 kWh	10 kWh *

* - Individual counter resolution should be at least 100.

Counters

Measured Energy

For each of four (4) counters different measured quantities can be selected. User can select from a range of predefined options referring to measured total energy or energy on single phase. Or can even select its own option by selecting appropriate quantity, quadrant, absolute or inverted value.

Individual counter Resolution

The individual counter resolution additionally defines precision of a certain counter, according to settings of common energy counter resolution.

With individual counter resolution is possible to customize counter resolution by multiplying *Common Energy Counter Resolution* by chosen scale factor (x1 ... x10000).

Example:

Common Energy Counter Resolution is set to 10 Wh Individual Counter Resolution is set to 100

Total resolution for counter is 10 Wh x 100 = 1 kWh

Tariff Selector

Defines tariffs where counter is active.

Inputs and outputs

Supervision Relay SR100 can be equipped with four relay output I/O modules. For relay output technical specifications see chapter <u>*Technical data – I/O modules*</u> on page 67.

Start-up delay for outputs (s)

When Supervision Relay SR100 is powered on, relay output modules stay in OFF state until expiration of start-up delay time. After expiration of start-up delay time, modules are set according to present network conditions. Compare time delay starts after expiration of start-up delay time. Please see diagram below for detailed explanation:

➡ – Input / Output simulations

Yellow – Setting range examples

🛇 – "answer"

MiQen setting - Supervision Relay SR100 > Inputs & Outputs > Start-up delay for outputs

Enabled protection groups

Selection of logical groups for physical output control.

Output signal

8 different configurable relay output signal forms:

- normal,
- normal inverse,
- latched,
- latched inversed,
- pulsed (define pulse length in seconds),
- pulsed inversed (define pulse length in seconds),
- always on,
- always off

Output signal		
Output signal:	Normal 🔫	
	Normal	
Pulse length (sec):	Normal inverse	
	Latched	
	Latched inverse Ruleed	
	Pulsed inverse	
	Alwaye ON	
	Always OFF	-

Options for I/O module 1/2/3/4

Outputs:

- Relay output
- Without

Relay output module

Relay output module has an alarm notification function. In case of any alarm occurrence, alarm output will trigger passive electromechanical relay or passive solid-state relay.

For each alarm output type of output signal (normal, normal inverse, latched, latched inverse, pulsed, pulsed inverse, Always ON, always OFF) when alarm is detected should be defined.

Protection Functions

Supervision Relay SR100 supports 13 different protection functions in 6 different logical categories:

- Current (<u>Overcurrent protection function (Over Current 1 & 2) ANSI# 50 (>I, >>I)</u> / <u>Overcurrent protection function (Over Current IE 1 & 2) ANSI# 50 N/G (>IE)</u> / <u>Overcurrent protection function (Over Current Idiff 1 & 2) ANSI# 87 (>I')</u>)
- Voltage (<u>Overvoltage protection functions</u> (<u>Over Voltage 1 & 2</u>) ANSI# 59 (>U, >>U)/ <u>Undervoltage protection functions</u> (<u>Under Voltage 1 & 2</u>) ANSI# 27 (<U, <<U))
- Frequency (Overfrequency protection functions (Over Frequency 1 & 2) ANSI# 810 (>f, >>f) /Underfrequency protection functions (Under Frequency 1 & 2) ANSI# 81U (<f, <<f))
- Asymmetry (<u>Asymmetry protection functions: Voltage Unbalances ANSI# 47 (>UUn)</u> and <u>Asymmetry protection functions: Phase Imbalance 1&2 ANSI# 46 (>I_{im}, >>I_{im})</u>)
- Load (Load protection functions: Directional power 1&2 ANSI# 32 (>P, >>P), Load protection functions: Power underrun 1&2 ANSI# 32R/U (<P, <<P))
- LoM (Loss of Mains) protection functions: Phase Shift ANSI# 78 (> dPhi/dt), LoM (Loss of Mains) protection functions: ROCOF protection ANSI# 81R (> df/dt))

The general parameters represented in the following table can be defined in the Setting and acquisition Software MiQen to define the overall functioning of the protection functions which Supervision Relay SR100 provides:

Settings	Definition
Connection mode	Defines the connection mode for the voltage monitoring.
Nominal Voltage (V)	Defines the nominal voltage for all voltage related protection functions.
Nominal Frequency	Defines the nominal frequency for all frequency related protection functions.
Rated Current (A)	Defines the rated current for all current related protection functions.
Rated Active Power (W)	Defines the rated active power for all power related protection functions.
Phase rotation	Defines the phase rotation direction for correct phase imbalance monitoring. Clockwise (L1-L2-L3); Anticlockwise (L1-L3-L2).
Phase Shift monitoring mode	Defines the phase shift monitoring mode. '1- in 3 phase' – tripping occurs if the phase shift exceeds the threshold value (1 phase) in at least one phase or exceeds the threshold value (3 phase) in all three phases: '3 phase' – tripping occurs if the phase shift exceeds the threshold value (3phase) in all three phases.
Monitoring**	Defines if monitoring parameter protection function is enabled or not.
Parameter limit (%)*	Defines the threshold value for tripping. If the threshold value is reached or fallen below for the period of at least compare delay time, the alarm will be activated.
Compare time delay (s)* (In this document will be marked as: t_{cd})	Defines the compare time delay for tripping. If the threshold value is reached or fallen below for the period of at least compare delay time, the alarm will be activated.
Hysteresis (%)*	Defines the hysteresis for tripping. The hysteresis is calculated from nominal value and is used when output switch off.
Assigned group**	Defines the logical group assigned with the protection function. Use enabled protection groups setting (Relay output) to assign logical groups to physical outputs.
Parameter limit – 1 phase ()***	Defines the threshold value for tripping. If the threshold value is reached of fallen below for the period of at least compare delay time, the alarm will be activated.
Parameter limit – 3 phase ()***	Defines the threshold value for tripping. If the threshold value is reached of fallen below for the period of at least compare delay time, the alarm will be activated.

* Under every particular protection category except Phase Shift

** Under every particular protection category

*** Under category Phase Shift

See MiQen Settings overview for Supervision Relay SR100 in chapter <u>Protection Functions in MiQEN - Setting and</u> Acquisition Software.

A PLEASE NOTE

Supervision Relay SR100 response time: Time from error detection to relay switching on/off is typically below 50ms.

Overcurrent protection function (Over Current 1 & 2) ANSI# 50 (>I, >>I)

A PLEASE NOTE

Overcurrent protection function (>I, >>I) has to be used with <u>Three phase, four wire connection with unbalanced</u> <u>load (4u)</u> – please refer to chapter *Electrical connection for Supervision Relay SR100* on page 12. Since other current protection functions use different electrical connection mode, it is not possible to use them simultaneously.

If >I and >>I are chosen (4u electrical connection), monitoring of >IE and >I' will not work properly.

ANSI #50 – Overcurrent protection function detect abnormally high network current on each individual phase. If current exceeds predefined parameter limit, protection function will trigger relay. It is possible to define up to two overcurrent (>I, >>I) relay output limits with up to 2000% of nominal current.

The parameters represented in the table below can be defined within the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Current > Over Current 1/2 protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Over Current 1	Monitoring	Yes/No	No
	Parameter limit (%)	10.0 – 2000.0	108
	Compare time delay (s)	0.00 - 60.00	0
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection Group 1, Protection Group 2,	Protection Group 1
		Protection Group 3, Protection Group 4	
Over Current 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	10.00 - 2000.00	112
	Compare time delay (s)	0.00 - 60.00	0.3
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3, Protection output 4	

Overcurrent protection function (Over Current IE 1 & 2) ANSI# 50 N/G

(>IE)

PLEASE NOTE

Overcurrent protection function (>IE) has to be used with <u>IE electrical connection</u> – please refer to chapter *Electrical connection for Supervision Relay SR100* on page 12. Since other current protection functions use different electrical connection mode it is not possible to use them simultaneously.

If >IE is chosen (IE electrical connection), monitoring of >I, >>I and >I' will not work properly.

ANSI #50 N/G – Earth fault protection function (>IE) detects earth faults. >IE measurement is performed in a way that external currents are summed. In normal operation summation equals 0. Earth fault on one or more phases will result in abnormally high network current which will trigger Earth fault function. It is possible to define up to two overcurrent (>IE) relay output limits with up to 550% of nominal current.

The parameters represented in the table below can be defined within the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Current > Over Current IE 1/2 protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Over Current 1	Monitoring	Yes/No	No
	Parameter limit (%)	0.40 – 550.00	108
	Compare time delay (s)	0.00 - 60.00	0
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection Group 1, Protection Group 2,	Protection Group 1
		Protection Group 3, Protection Group 4	
Over Current 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	0.40 – 550.00	112
	Compare time delay (s)	0.00 - 60.00	0.3
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3, Protection output 4	

Overcurrent protection function (Over Current Idiff 1 & 2) ANSI# 87 (>l')

A PLEASE NOTE

Overcurrent protection function (>I') has to be used with <u>*Idiff electrical connection*</u> – please refer to chapter *Electrical connection for Supervision Relay SR100* on page 12. Since other current protection functions use different electrical connection mode it is not possible to use them simultaneously.

If >I' is chosen (Idiff electrical connection), monitoring of >I, >>I and >IE will not work properly.

ANSI #87 – Over current ldiff protection function compares the differential current of each of the 3 phases, providing an RMS measurement at sinusoidal currents. When measurement exceeds predefined parameter limit, ldiff protection function triggers relay. It is possible to define up to two overcurrent (>I') relay output limits with up to 200% of nominal current.

The parameters represented in the table below can be defined within the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Current > Over Current Idiff 1/2 protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Over Current 1	Monitoring	Yes/No	No
	Parameter limit (%)	0.80 – 200.00	108
	Compare time delay (s)	0.00 - 60.00	0
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection Group 1, Protection Group 2,	Protection Group 1
		Protection Group 3, Protection Group 4	
Over Current 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	0.80 - 200.00	112
	Compare time delay (s)	0.00 - 60.00	0.3
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3, Protection output 4	

Overvoltage protection functions (Over Voltage 1 & 2) ANSI# 59 (>U, >>U)

ANSI #59 – Overvoltage protection function detect abnormally high network voltage or checking for sufficient voltage to enable source transfer. This function works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately. It is possible to define up to two overvoltage relay output limits with up to 150% of nominal voltage.

The parameters represented in the table below can be defined within the Setting and acquisition Software MiQen(see MiQen: <u>SR100 > Protection > Voltage > Over Voltage ½ protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Over Voltage 1	Monitoring	Yes/No	Yes
	Parameter limit (%)	100.00 - 150.00	108
	Compare time delay (s)	0.00 - 60.00	5
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	
Over Voltage 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	100.00 - 150.00	112
	Compare time delay (s)	0.00 - 60.00	0.3
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3, Protection output 4	

Monitoring – Over Voltage

Undervoltage protection functions (Under Voltage 1 & 2) ANSI# 27 (<U, <<U)

ANSI #27 - Undervoltage is used for protection of motors against voltage sags or detection of abnormally low network voltage to trigger automatic load shedding or source transfer. Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately. It is possible to define up to two undervoltage relay output limits with down to 50% of nominal voltage.

The parameters represented in the following table can be defined in the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Voltage > Under voltage 1/2 protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Under Voltage 1	Monitoring	Yes/No	Yes
	Parameter limit (%)	50.00 - 100.00	92
	Compare time delay (s)	0.00 - 60.00	5
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	
Under Voltage 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	50.00 - 100.00	88
	Compare time delay (s)	0.00 - 60.00	0.3
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3, Protection output 4	

Monitoring – Under Voltage

Overfrequency protection functions (Over Frequency 1 & 2) ANSI# 810 (>f, >>f)

ANSI #810 – Overfrequency represents detection of abnormally high frequency compared to the rated frequency, to monitor power supply quality. Monitoring of the frequency is accomplished in two steps. It is possible to define up to two overfrequency relay output limits with up to 150% of nominal frequency.

The parameters represented in the following table can be defined in the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Frequency > Over Frequency 1/2 protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Over Frequency 1	Monitoring	Yes/No	Yes
	Parameter limit (%)	100.00 - 150.00	110
	Compare time delay (s)	0.00 - 60.00	1.5
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	
Over frequency 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	100.00 - 150.00	115
	Compare time delay (s)	0.00 - 60.00	0.3
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3, Protection output 4	

Monitoring – Over Frequency

Underfrequency protection functions (Under Frequency 1 & 2) ANSI# 81U (<f, <<f)

ANSI #81U – Underfrequency is detection of abnormally low frequency compared to the rated frequency, to monitor power supply quality. The protection may be used for overall tripping or load shedding. Protection stability is ensured in the event of the loss of the main source and presence of remnant voltage by a restraint in the event of a continuous decrease of the frequency, which is activated by parameter setting. Monitoring of the frequency is performed in two steps. It is possible to define up to two underfrequency relay output limits with down to 50% of nominal frequency.

The parameters represented in the following table can be defined in the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Frequency > Under Frequency 1/2 protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Under Frequency 1	Monitoring	Yes/No	Yes
	Parameter limit (%)	50.00 - 100.00	90
	Compare time delay (s)	0.00 - 60.00	5
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	
Under frequency 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	50.00 - 100.00	84
	Compare time delay (s)	0.00 - 60.00	0.3
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3, Protection output 4	

Monitoring – Under Frequency

Asymmetry protection functions: Voltage Unbalances ANSI# 47 (>UUn)

Voltage unbalance is regarded as a power quality problem of significant concern at the electricity distribution level. Although the voltages are quite well balanced at the generator and transmission levels the voltages at the utilization level can become unbalanced due to the unequal system impedances and the unequal distribution of single-phase loads. An excessive level of voltage unbalance can have serious impacts on mains connected induction motors. The level of current unbalance that is present is several times the level of voltage unbalance. With this protection function Voltage Unbalance is supervised over phase resulting from phase inversion, unbalanced supply or distant fault, detected by the measurement of negative sequence voltage component of a three phase system. This parameter has a range of 0 to 100% of the rated nominal voltage.

The parameters represented in the following table can be defined in the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Asymmetry > Voltage unbalances protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Voltage Unbalances	Monitoring	Yes/No	Yes
	Parameter limit (%)	0.00 - 100.00	100
	Compare time delay (s)	0.00 - 60.00	5
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	

Monitoring – Voltage Unbalances

The figure below graphically represents the behavior of this particular protection function:

Monitoring - Voltage Unbalances

Asymmetry protection functions: Phase Imbalance 1&2 ANSI# 46 (>I_{im},

>>l_{im})

ANSI #46 represents protection against phase unbalance, detected by the measurement of negative sequence currents. It can be used in the following practical examples:

- Sensitive protection to detect 2-phase faults at the ends of long lines
- Protection of equipment against temperature build-up, caused by an unbalanced power supply, phase inversion or loss of phase, and against phase current unbalance

The phase imbalance protection function is used for protection over phase imbalance resulting from phase inversion, unbalanced supply or distant fault, detected by the measurement of negative sequence voltage. This threshold is defined relative to the rated current and has a range between 0 and 100%.

The parameters represented in the following table can be defined in the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Asymmetry > Phase Imbalance 1/2 protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Phase Imbalance 1	Monitoring	Yes/No	Yes
	Parameter limit (%)	0.00 - 100.00	10
	Compare time delay (s)	0.00 - 60.00	10
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	
Phase Imbalance 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	0.00 - 100.00	15
	Compare time delay (s)	0.00 - 60.00	1
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3. Protection output 4	

Monitoring – Phase Imbalance

Load protection functions: Directional power 1&2 ANSI# 32 (>P, >>P)

This protection function is a two-way protection based on calculated active power, for the following applications:

- active overpower protection to detect overloads and allow load shedding
- reverse active power protection:
 - against generators running like motors when the generators consume active power
 - against motors running like generators when the motors supply active power

Directional power protection is based on calculated active power. Active overpower monitoring is used to detect overloads and allow load shedding. It is possible to define up to two relay output limits within the range between -300% and 300% of the rated active power.

The parameters represented in the following table can be defined in the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Load > Directional power 1/2 protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Directional power 1	Monitoring	Yes/No	Yes
	Parameter limit (%)	-300.00 - 300.00	110
	Compare time delay (s)	0.00 - 60.00	11
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	
Directional power 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	-300.00 - 300.00	120
	Compare time delay (s)	0.00 - 60.00	0.1
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3, Protection output 4	

Monitoring – Directional power

Load protection functions: Power underrun 1&2 ANSI# 32R/U (<P, <<P)

Power underrun Protection is based on calculated active power. This user defined limit defines the permissible deviation of the load from defined thresholds. The function is triggered if the measured value falls below the rated active power limit and can be set between -300% and 300%.

The parameters represented in the following table can be defined in the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > Load > Power underrun 1/2 protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Power underrun 1	Monitoring	Yes/No	Yes
	Parameter limit (%)	-300.00 - 300.00	-3
	Compare time delay (s)	0.00 - 60.00	5
	Hysteresis (%)	s (%) 0.00 – 10.00	
	Assigned Group	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	
Power underrun 2	Monitoring	Yes/No	Yes
	Parameter limit (%)	-300.00 - 300.00	-5
	Compare time delay (s)	0.00 - 60.00	3
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Group	Protection output 1, Protection output 2,	Protection output 2
		Protection output 3, Protection output 4	

Monitoring – Power underrun

LoM (Loss of Mains) protection functions: Phase Shift ANSI# 78(> dPhi/dt)

Loss of Mains occurs when part of the public utility network loses connection with the rest of the system. If LOM is not detected, then the generator could remain connected, causing a safety hazard within the network. Automatic reconnection of the generator to the network may occur causing damage to the generator and the network.

One of LOM detection methods is Voltage Vector Shift/Phase Shift. The Vector Shift protection algorithm is based on voltage angle measurements performed on all three phase voltages. A measurement is taken from each of the 3 phase voltages after every half-cycle and the decision is made after a full cycle. The use of the three phases makes the algorithm less exposed to harmonic distortion, interference and imbalanced faults. This improves protection stability and decreases the probability of spurious tripping during nonsymmetrical faults. This limit for phases 1 and 3 can be set in the range between 0 and 90% respectively.

The monitoring may be carried out in three-phase or one-phase mode. The monitoring can be configured in different ways. The vector/phase shift monitor can also be used as an additional method to decouple from the grid. Vector/phase shift monitoring is only enabled after the monitored voltage exceeds 50% of the PT secondary rated voltage.

The parameters represented in the following table can be defined in the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > LoM > Phase Shift protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
Phase Shift	Monitoring	Yes/No	Yes
	Parameter limit – 1 phase (°)	0.00 - 90.00	20
	Parameter limit – 3 phase (°) 0.00 – 90.00		8
	Assigned Output	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	

Monitoring – Phase Shift

Monitoring – Phase Shift

LoM (Loss of Mains) protection functions: ROCOF protection ANSI# 81R(> df/dt)

Loss of Mains occurs when part of the public utility network loses connection with the rest of the system. If LOM is not detected, then the generator could remain connected, causing a safety hazard within the network. Automatic reconnection of the generator to the network may occur causing damage to the generator and the network. One of LOM detection methods is ROCOF (Rate Of Change Of Frequency). The ROCOF method is based on the local measurement of the generator voltage and estimation of the rate of change of frequency. The rate of change of frequency following an LOM event is directly proportional to the amount of active power imbalance between local load and the generator output. The ROCOF value is calculated in moving 60ms windows and two consecutive calculations are required to assess if this is a permanent change. When both give a result above the set threshold the trip signal is initiated. To provide additional stability against normal load switching events and other small scale system transients, an additional time delay can be applied.

ROCOF parameter has a permissible limit range between 0 and 10 Hz/s. The frequency of a source will vary due to changing loads and other effects. The rate of these frequency changes due to the load variances is relatively high compared to those of a large network. The control unit calculates the unit of measure per unit of time. The df/dt is measured over 4 sine waves to ensure that it is differentiated from a phase shift. This results in a minimum response time of approximately 100ms.

The parameters represented in the following table can be defined in the Setting and acquisition Software MiQen (see MiQen: <u>SR100 > Protection > LoM > ROCOF df/dt protection functions</u>; description is identical for all limits; the limits may only differ in their setting ranges):

Limit	Text	Setting range	Standard value
ROCOF df/dt	Monitoring	Yes/No	Yes
	Parameter limit (Hz/s)	0.00 - 10.00	2.6
	Compare time delay (s)	0.00 - 60.00	0.1
	Hysteresis (%)	0.00 - 10.00	0
	Assigned Output	Protection output 1, Protection output 2,	Protection output 1
		Protection output 3, Protection output 4	

Monitoring - ROCOF

Protection Functions in MiQEN - Setting and Acquisition Software

MiQEN software is intended for setting up the Supervision Relay SR100 and many other instruments through a PC. Network and the transducer setting, display of measured values are possible via the serial communication. The information and measurements can be exported in standard Windows formats. The software runs on Windows XP, Vista, Win7, Win8 and Win10 operating systems.

Main features of MiQEN Setting studio software:

- Setting all of the instruments parameters (online and offline)
- Viewing current measured readings
- Setting and resetting energy counters
- Complete relay Output modules configuration
- Searching the network for devices
- Virtual interactive instrument
- Comprehensive help support

MiQEN Settings overview for Supervision Relay SR100 (example shows relay output module signal options)

Protection Functions

Current protection functions:

🖶 🧀 🗉 🖺	▋▙▎▙▏▟▖Q,▌▓▌▓▕▙▌▓	• <3		
Refresh	Address: 33	🧀 Go to: 👻		
	📺 Settings		C:\Users\Deja	n\Desktop\SR100-1
		Setting	Value	
Connection	📄 🚓 General	[50] Over Current 1		
	X Connection	Monitoring	No	-
	Communication	Parameter limit (%)	108	
100 C	Security	Compare time delay (s)	0	
Settings		Hysteresis (%)	0	
settings	Protection	Assigned group	Protection group 1	
	Current	[50] Over Current 2		
	Voltage	Monitoring	No	
	💟 Frequency	Parameter limit (%)	105	
easurements	😨 Asymmetry	Compare time delay (s)	2	
	💟 Load	Hysteresis (%)	0	
	LoM	Assigned group	Protection group 2	
1.74	inputs & Outputs	I50 N/GI Over Current IE 1		
Analysis	[1] Relay output	Monitoring	No	
	[2] Relay output	Parameter limit (%)	105	
-	[3] Nelay output	Compare time delay (s)	0	
	Reset	Hysteresis (%)	0	
My Devices		Assigned group	Protection group 2	
		ISO N/GLOver Current JE 2		
_		Monitoring	No	
		Parameter limit (%)	115	
Ungrades			2	
opgrades		Hustomaia (%)	2	
		Assigned aroun	Protection group 2	
			Protection group 2	
			N	
		Providence (%)	105	
		Parameter limit (%)	105	
		Compare time delay (s)	0	
		Hysteresis (%)	0	
		Assigned group	Protection group 3	
		[87] Over Current Idiff 2		
		Monitoring	No	
		Parameter limit (%)	120	
		Compare time delay (s)	2	
		Hysteresis (%)	2	
		Assigned group	Protection group 3	
		Monitoring Defines if monitoring parameter protection	function is enabled or not.	Password

MiQen: Setting – Current protection functions

SETTINGS

Voltage protection functions:

⊗ Iskra°

🖙 MiQen 2.1 - Sett	ting Studio			
<u>File T</u> ools	<u>V</u> iew <u>H</u> elp			
i 📫 🔔 📸 - 🐚				
Refrech	Address 22	Gater -		
Nerresn .	Address: 55			
	G Settings		C:\Users\D	ejan\Desktop\SR100-1.msf
	□	Setting	Value	
Connection		[59] Over Voltage 1		
		Monitoring	Yes	-
- (55)	Security	Parameter limit (%)	110	
(3)	Energy	Compare time delay (s)	0	
Settings	Counters	Hysteresis (%)	0	
-	- V Protection	Assigned group	Protection group 1	
	Current	[59] Over Voltage 2 [59]		
	Voltage	Monitoring	Yes	
Measurements	Frequency	Parameter limit (%)	110	
	Asymmetry	Compare time delay (s)	5	
	Load	Hysteresis (%)	0	
1		Assigned group	Protection group 1	
920	III Relay output	[27] Under Voltage 1		
Analysis	Analysis [1] Relay output [2] Relay output [3] Relay output	Monitoring	No	
		Parameter limit (%)	92	
	[4] Relay output	Compare time delay (s)	5	
	Reset	Hysteresis (%)	0.7	
My Devices		Assigned group	Protection group 1	
		[27] Under Voltage 2		
		Monitoring	No	
- 5		Parameter limit (%)	88	
Upgrades		Compare time delay (s)	0,3	
		Hysteresis (%)	0,7	
		Assigned group	Protection group 2	
		Monitoring Defines if monitoring parameter protection	n function is enabled or not.	Password: 2

MiQen: Setting – Voltage protection functions

Frequency protection functions:

File Jook View Help Image: Security Image: Security CitUsers/Dejan/Desktop/SR100-1.r Image: Security Security Security Security Image: Security Security Image: Security Image: Security Image: Security Connection Security Image: Security Image: Security Image: Security Connection Security Image: Security Image: Security Image: Security Image: Security Connection Security Image: S	🖙 MiQen 2.1 - Setti	ing Studio		
Image: Connection Image: Connection Image: Connection Chubers/Desktop/SR100-1.r Image: Connection Image: Connection Image: Connection Chubers/Desktop/SR100-1.r Image: Connection Image: Connection Image: Connection Image: Connection Chubers/Desktop/SR100-1.r Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection Image: Connection	<u>File Tools </u>	<u>V</u> iew <u>H</u> elp		
Referent Address: 33 Conversion Settings Settings Clubers/Dejan/Desktop/SR100-1.rf Settings Settings Value Settings Setting Value Settings Connection Setting Value Settings Connection Setting Value Settings Connection Setting Value Measurements Protection Setting Value Measurements Protection Concerns Protection Parameter limit (3) Do Manage Protection Protection No Parameter limit (3) Distribution My Devices Protection Setting No Parameter limit (3) Distribution Parameter limit (3) Distribution Parameter limit (3) Distribution Parameter limit (3) Parameter limit	📄 🔜 💕 - 🛤			
With the settings C:\Users\Dejan\Desktop\SR100-1.r Connection Settings C:\Users\Dejan\Desktop\SR100-1.r Settings Connection Settings Value Protection Security Yes Protection Protection Protection Settings Protection Protection Protection Protection Protection Connection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection <th< td=""><td>Refresh</td><td>Address: 33</td><td>Go to: 🔻</td><td></td></th<>	Refresh	Address: 33	Go to: 🔻	
Settings Connection Settings Settings Connection Settings Settings Connuciation Settings Connuciatio	Nerresh 1			
Connection Value Connection General Image: Secting s Setting s Communication Setting s Energy Protection Secting s Protecting s		Settings		C:\Users\Dejan\Desktop\SR100-1.mst
Connection Image: Connection Settings Connection Settings Contraction Settings Contraction Settings Contraction Settings Contraction Settings Protection Settings Protection Settings Protection Settings Value Value Value	39	General	Setting	Value
Vorticity Tes Settings Communication Settings Energy Wessurements Parameter Imt (%) Wessurements Voltage Wessurements Voltage Windowski Voltage Voltage Parameter Imt (%) Voltage No Parameter Imt (%) 0 Voltage No Voltage No Parameter Imt (%) 0.1 Analysis Inputs 8 Solupts Vigger It Relay output Vigger It Relay output Vigger It Relay output Vigger Parameter Imt (%) Vigger It Relay output Vigger It Relay output Vigger It Relay output Vigger It Relay output Vigger Parameter Imt (%) Vigger Parameter Imt (%) Vigger It Relay output Vigger Parame	Connection	Connection	[810] Over Frequency 1	
Settings Image: Security Image:		Communication	Monitoring	
Settings Image: Bergy Compare time delay (s) 0 Image: Bergy Compare time delay (s) 0 Image: Bergy Protection 0 Image: Bergy Image: Bergy Protection <td></td> <td></td> <td>Parameter limit (%)</td> <td>103</td>			Parameter limit (%)	103
Settings Implements Protection Protection group 1 Implements Implements Implements Protection group 1 Implements Implements Implements No Implements Implements Implements No Implements Implements Implements Implements Implements Implement		🖶 🗐 Energy	Compare time delay (s)	0
Assigned group Protection group 1 Weasurements Image: Compart line delay (a) No Image: Compart line delay (b) 0.3 Image: Compart line delay (b) 0.3 Image: Compart line delay (c) 0.1 Image: Compart line delay (c) 0 Image: Compart line delay (c) 0.1 Assigned group Protection group 1 Image: Compart line delay (c) 0.1 Assigned group Protection group 1 Image: Compart line delay (c) 0.1 Assigned group Protection group 2 Image: Compart line delay (c) 0.3 Hyst	Settings	Counters	Hysteresis (%)	0
Weasurements Image: Current Solution of the second of		- V Protection	Assigned group	Protection group 1
Weasurements Voitage Montoring No Parameter limit (%) 115 115 115 Compare time delay (s) 0.3 117 117 Voitage Load 117 117 117 Voitage Inputs & Outputs 0.1 117 117 Voitage Inputs & Outputs Voitage 0.1 117 Voitage Inputs & Outputs Voitage Voitage 0.1 Voitage Voitage Voitage Voitage 0.1 Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage Voitage<		Current	[810] Over Frequency 2	
Measurements Parameter limit (%) 115 Compare time delay (s) 0,3 Vision Lod 0,1 Analysis Imputs 8 Outputs Protection group 2 Imputs 8 Outputs Imputs 8 Output Protection group 2 Imputs 8 Outputs Imputs 8 Output Parameter limit (%) 0,1 Imputs 8 Outputs Imputs 8 Output Parameter limit (%) 97 Imputs 9 Output Imputs 9 Output Parameter limit (%) 97 Imputs 9 Output Imputs 9 Output Parameter limit (%) 0 Imputs 9 Output Imputs 9 Output Parameter limit (%) 0 Imputs 9 Output Imputs 9 Output Parameter limit (%) 0 Imputs 9 Output Imputs 9 Output Outputs 0 Imputs 9 Output Imputs 9 Output Imputs 9 Output 0 Imputs 9 Output Imputs 9 Output Imputs 9 Output Imputs 9 Output		Voltage	Monitoring	No
Image: Compare time delay (s) 0.3 Image: Compare time delay (s) 0.1 Hysteresis (?,) 0.1 Hysteresis (?,) 0.1 Image: Compare time delay (s) 0 Image: Compare time delay (s) 0 Image: Compare time delay (s) 0 Hysteresis (%,) 0 Assigned group Protection group 1 Image: Compare time delay (s) 0 Hysteresis (%,) 0 Assigned group Protection group 1 Image: Compare time delay (s) 0.3 Hysteresis (%,) 0.1 Assigned group Protection group 1 Image: Compare time delay (s) 0.3 Hysteresis (%,) 0.3 Hysteresis (%,) 0.1 Assigned group Protection group 2 Image: Compare time delay (s) 0.3 Hysteresis (%,) 0.1 Assigned group Protection group 2	Measurements	Agreenter	Parameter limit (%)	115
Image: Second Analysis Hysteresis (%) 0.1 Analysis Image: Second Analysis Hysteresis (%) Protection group 2 Image: Second Analysis Image: Second Analysis Hysteresis (%) Protection group 2 Image: Second Analysis Image: Second Analysis Hysteresis (%) Protection group 2 Image: Second Analysis Image: Second Analysis Hysteresis (%) Protection group 2 Image: Second Analysis Image: Second Analysis Hysteresis (%) Protection group 2 Image: Second Analysis Image: Second Analysis Hysteresis (%) Protection group 2 Image: Second Analysis Image: Second Analysis Protection group 1 Hysteresis (%) Image: Second Analysis Image: Second Analysis Protection group 1 Hysteresis (%) Image: Second Analysis Image: Second Analysis No Protection group 1 Image: Second Analysis Image: Second Analysis No Protection group 2 Image: Second Analysis Image: Second Analysis Image: Second Analysis Protection group 2 Image: Second Analysis Image: Second Analysis Image: Second Analysis Protection group 2 Image: Second Analysis Image: Second Analysis Image: Second Analysis Protection group 2 Image: Second Analysis		- Asymmetry	Compare time delay (s)	0.3
Image: Analysis Inputs & Outputs Protection group 2 Image: Analysis Image: Analysis Image: Analysis Image: Analysis Image: Analysis			Hysteresis (%)	0,1
Analysis Image: Ima	1 m	- A Inputs & Outputs	Assigned group	Protection group 2
Image: Second	Analysis	[1] Relay output	[81U] Under Frequency 1	
My Devices Parameter limit (%) 97 Upgrades [4] Relay output Parameter limit (%) 0 Hysteresis (%) 0 0 Assigned group Protection group 1 [81U] Under Frequency 2 1 Monitoring No Parameter limit (%) 0.3 Hysteresis (%) 0.1 Assigned group Protection group 2 Image: Compare time delay (s) 0.3 Hysteresis (%) 0.1 Assigned group Protection group 2	Analysis		Monitoring	Yes
My Devices Image: [4] Relay output Compare time delay (s) 0 My Devices Protection group 1 Hysteresis (%) 0 Upgrades Monitoring No Vigit Parameter limit (%) 84 Compare time delay (s) 0.3 Hysteresis (%) 0.1 Assigned group Protection group 2 Image: Compare time delay (s) 0.3 Hysteresis (%) 0.1 Assigned group Protection group 2		ᡍ [3] Relay output	Parameter limit (%)	97
My Devices Hysteresis (%) 0 My Devices Assigned group Protection group 1 [81U] Under Frequency 2 Monitoring Upgrades No Upgrades Parameter limit (%) 84 Compare time delay (s) 0.3 Hysteresis (%) 0.1 Assigned group Protection group 2 Image: Compare time delay (s) 0.2 Upgrades Upgrades		[4] Relay output	Compare time delay (s)	0
My Devices Assigned group Protection group 1 [81U] Under Frequency 2 Monitoring No Parameter limit (%) 84 Compare time delay (s) 0.3 Hysteresis (%) 0.1 Assigned group Protection group 2		Reset	Hysteresis (%)	0
Image: Second	My Devices		Assigned group	Protection group 1
Monitoring No Parameter limit (%) 84 Compare time delay (s) 0,3 Hysteresis (%) 0,1 Assigned group Protection group 2 Image: Compare time of the parameter protection function is enabled or not. Password			[81U] Under Frequency 2	
Upgrades Upgrades Parameter limit (%) Parameter limit (%) Compare time delay (s) O.3 Hysteresis (%) Assigned group Protection group 2 Monitoring Defines if monitoring parameter protection function is enabled or not.			Monitoring	No
Upgrades Upgrades Compare time delay (s) 0,3 Hysteresis (%) 0,1 Assigned group Protection group 2 Monitoring Defines if monitoring parameter protection function is enabled or not.	- 5		Parameter limit (%)	84
Hysteresis (%) 0,1 Assigned group Protection group 2 Monitoring Defines if monitoring parameter protection function is enabled or not.	Upgrades		Compare time delay (s)	0,3
Assigned group Protection group 2 Monitoring Passwor Defines if monitoring parameter protection function is enabled or not. Passwor			Hysteresis (%)	0.1
Monitoring Passwor Defines if monitoring parameter protection function is enabled or not. Passwor			Assigned group	Protection group 2
			Monitoring Defines if monitoring parameter protection	Password: 2 on function is enabled or not.

MiQen: Setting – Frequency protection functions

I

Asymmetry protection functions:

MiQen: Setting – Asymmetry protection functions

Load protection functions:

Settings SR100 General Connection	Setting [32] Load Overnun 1	C:\Users\Dejan\Desktop\SR100- Value
a, SR100 ⊨ 🚵 General I	Setting [32] Load Overrun 1	Value
🖮 🔝 General	[32] Load Overrun 1	
K Connection	feel come or output it	
	Monitoring	No
Communication	Parameter limit (%)	105
Energy	Compare time delay (s)	1
Counters	Hysteresis (%)	1
Protection	Assigned group	Protection group 1
Current	[32] Load Overrun 2	
😨 Voltage	Monitoring	No
😨 Frequency	Parameter limit (%)	120
surements Asymmetry	Compare time delay (s)	0,1
····· 💟 Load	Hysteresis (%)	1
	Assigned group	Protection group 2
inputs & Outputs	[32R/U] Load Underrun 1	
[1] Nelay output	Monitoring	No
	Parameter limit (%)	-3
[4] Relay output	Compare time delay (s)	5
Reset	Hysteresis (%)	1
_	Assigned group	Protection group 1
	[32R/U] Load Underrun 2	
	Monitoring	No
	Parameter limit (%)	-5
	Compare time delay (s)	3
	Hysteresis (%)	
	Assigned group	Protection group 2
	Current Votage Votag	Image: Section Secting Section Section Sectin Section Section Section Section Section

MiQen: Setting – Load protection functions

LoM protection functions:

🖙 MiQen 2.1 - Sett	ting Studio		
<u>F</u> ile <u>T</u> ools	<u>V</u> iew <u>H</u> elp 🛃 🕼 🎒 🔍 📖 📎 🗖 癸		
Refresh	Address: 33	🧀 Go to: 👻	•
	📺 Settings		C:\Users\Dejan\Desktop\SR100-1.msf
	🖃 📲 SR100	Setting	Value
Connection	🚊 🖓 😭 General	[78] Phase Shift	
	Connection	Monitoring	No 👻
	Communication	Parameter limit - 1 phase (°)	20
	Energy	Parameter limit - 3 phase (°)	8
Settings	Counters	Assigned group	Protection group 1
beenings	Protection	[81R] ROCOF df/dt	
	Current	Monitoring	No
	🕑 Voltage	Parameter limit (Hz/s)	2,6
Massurements	Frequency	Compare time delay (s)	0,1
weasurements	Asymmetry	Hysteresis (%)	0
	Load	Assigned group	Protection group 1
1	Incluse & Outputs		
Applyric	II] Relay output		
Analysis	[2] Relay output		
	ᡍ [3] Relay output		
	[4] Relay output	(i) Monitoring	Password: 2
My Devices		Defines if monitoring parameter protection	on function is enabled or not.
	1	,	

MiQen: Setting – LoM protection functions

On-line data monitoring

MiQen 2.1 - Set	ting Studio		
File Tools	View Help		
📫 🔜 📂 - 🖆			
🍓 Refresh	Address: 33	🤿 Go to: 🗸	
	Measurements		SR100 - Simulation
	Protection	State	
Connection	[50] Over Current 1	ОК	
	[50] Over Current 2	ОК	
(4.0)	[50 N/G] Over Current IE 1	ОК	
(C)	[50 N/G] Over Current IE 2	ок	
Settings	[87] Over Current Idiff 1	ок	
	[87] Over Current Idiff 2	ОК	
	[59] Over Voltage 1	ОК	
	[59] Over Voltage 2	ок	
Measurements	[27] Under Voltage 1	Trip: L1, L2, L3	
Websurements	[27] Under Voltage 2	ОК	
	[810] Over Frequency 1	Pickup: L1, L2	
1	[810] Over Frequency 2	ОК	
	[81U] Under Frequency 1	ОК	
Analysis	[81U] Under Frequency 2	ОК	
	[32] Load Overrun 1	Trip	
	[32] Load Overrun 2	Trip	
	[32R/U] Load Undemun 1	ОК	
My Devices	[32R/U] Load Undemun 2	ОК	
	[47] Voltage Unbalances	ОК	
	[46] Phase Imbalance 1	ОК	
50	[46] Phase Imbalance 2	Trip	
Upgrades	[78] Phase Shift	Trip: L1, L2, L3	
	[81R] ROCOF df/dt	ОК	
	Measurements Protection	i Recorder	

On-line data monitoring in Supervision Relay SR100 with MiQEN (example shows actual protection states)

I

On-line data monitoring for Supervision Relay SR100 with MiQen provides us with states of protection functions. Three different states are possible over communication (not on relay):

- Ok normal operation without alarms
- Pickup parameter limit has been reached
- Trip alarm

Pickup state example:

- Over Voltage parameter limit is set to 110%; Time delay is set to 3s
- When voltage reaches parameter limit of 110%, Pickup state is displayed in MiQen.
- After 3s (time delay), pickup state changes to Trip (presuming that voltage stayed over 110% the entire time)

Reset

During normal operation of a device different counter values need to be reset from time to time.

Reset energy counter [E1/E2/E3/E4]

All or individual energy meters (counters) are reset.

Reset MD values

Set maximum demand values to zero. At the same time MD synchronization is performed.

Reset Last period MD

Set maximum demand last period values to zero. At the same time MD synchronization is performed.

Alarm relay [1/2/3/4] Off

When using MiQen, each alarm output can be reset separately.

Reset alarm statistic

Clears alarm statistic. It can be made by MiQen software under Alarm settings. This setting is only for resetting online alarms statistics displayed in MiQen software.

MEASUREMENTS

Online measurements

Online measurements can be monitored with setting and monitoring software MiQen.

Refresh rate of readings is fixed to approx. one second in MiQen.

For better overview over numerous readings, they are divided into two groups:

- Measurements
- Protection

Measurements group can represent data in visually favored graphical form or detailed tabelaric form. Latter allows freezing readings and/or copying data into various report generation software tools. Protection group can only present data in tabelaric form.

Example: Online measurements in graphical form - phasor diagram and daily total active power consumption histogram

	22					
Ketresh	Address: 33	/ A	io to: •			
	Measurements					SR100 - Simi
20	Phase measurements	L1	L2	L3	Total	Others
Connection	Voltage	229,81 V	229,23 V	227,82 V		U~ = 228,95 V
	Current	158,15 A	285,70 A	277,40 A	721,25 A	I~ = 240,41 A
0.0	Real Power	36,21 kW	65,33 kW	60,48 kW	162,03 kW	Inc = 2,85 A
(3)	Reactive Power	1,98 kvar	-0,12 kvar	18,26 kvar	20,12 kvar	
Settings	Apparent Power	36,34 kVA	65,48 kVA	63,20 kVA	165,03 kVA	
	Power Factor	0,9964 Ind	0,9977 Cap	0,9571 Ind	0,9818 Ind	
	Power Angle	1,89 °	0,16 °	16,60 °	7,08 °	
1	THD-Up	2,55 %	2,67 %	2,51 %		
Measurements	THD-I	8,16 %	5,94 %	4,60 %		
	Phase Shift	0,00 °	0,00 °	0,00 °		
	Phase to phase measurements	L1 - L2	L2 - L3	L3 - L1	Total	Others
1	Phase to phase voltage	398,60 V	395,43 V	395,66 V		Upp~ = 396,56 V
Analysis	Phase Angle	120,52 °	119,81 °	119,66 °		
Analysis	THD-Upp	2,63 %	2,52 %	2,50 %		
	Energy counters	Counter E1 (Exp)	Counter E2 (Exp)	Counter E3 (Imp)	Counter E4 (Imp)	Active tariff
	Energy	23.346,91 kWh	1.441,18 kvarh	995,33 kWh	28.480,88 kvarh	1
	Inputs and outputs	 Analogue output 	[2] Analogue output	[3] Relay output	[4] Relay output	
My Devices	Value	16,45 mA	9,90 mA	Off	Off	
	Other measurements	Value				
	Voltage Unbalances Uo	0,53 %				
50	Phase Imbalance	0,00 %				
Upgrades	Frequency	49,993 Hz				
	ROCOF df/dt	0,00 Hz/s				
	Internal Temperature	18,1 °C				

Example: Online measurements in tabelaric form

Available connections

Different electric connections are described in more detail in chapter Electrical connection. Connections are marked as follows:

- Connection 1b (1W) Single phase connection
- Connection 3b (1W3) Three phase, three wire connection with balanced load
- Connection 4b (1W4) Three phase, four wire connection with balanced load
- Connection 3u (2W3) Three phase, three wire connection with unbalanced load
- Connection 4u (3W4) Tree phase, four wire connection with unbalanced load
- Connection IE Tree phase, four wire connection with unbalanced load
- Connection Idiff Tree phase, four wire connection with unbalanced load

A PLEASE NOTE

Measurements and protection functions support depends on connection mode. Each current protection function uses different electrical connection mode. When specific current protection function in correlation to its connection mode is used, it is not possible to activate other two current protection functions.

If >I and >>I are chosen (4u electrical connection), monitoring of >IE and >I' is not allowed. If >IE is chosen (IE electrical connection), monitoring of >I, >>I and >I' is not allowed. If >I' is chosen (Idiff electrical connection), monitoring of >I, >>I and >IE is not allowed.

Please refer to chapter *Electrical connection for Supervision Relay SR100* on page 12 for more information/details regarding electrical wiring.

& Iskra

Supported measurements

Selection of supported measurements and protection functions of individual instrument is changed within the connection settings. All supported measurements can be read via communication (through MiQen) or displayed on the device display (not supported no Supervision Relay SR100).

Selection of available quantities

Available online measuring quantities and their appearance can vary according to the setup type of power network and other settings such as; average interval, maximum demand mode and reactive power calculation method. A complete list of available online measuring quantities is shown in the table below.

A PLEASE NOTE

Measurements support depends on connection mode as well as the device type (built-in options). Calculated measurements (for example voltages U_1 and U_2 when 3-phase, 4-wire connection with a balanced load is used) are only informative.

A PLEASE NOTE

For 3b and 3u connection mode, only phase to phase voltages are measured. The factor v3 is then applied to calculate the nominal phase voltage. For 4u connection mode the same measurements are supported as for 1b.

lskra°

	Basic measurements	Designat.	Unit	1b	3b	3u	4b	4u
Phase	Voltage U1	U1	V	•	×	×	•	•
	Voltage U2	U2	V	×	×	×	0	•
	Voltage U3	U3	V	×	×	×	0	•
	Average voltage U~	U	V	×	×	×	0	•
	Current I1	11	А	•	•	•	•	•
	Current I2	12	А	×	0	•	0	•
	Current I3	13	А	×	0	•	0	•
	Current In	Inc	А	×	0	0	0	•
	Total current It	I	А	•	0	0	0	•
	Average current I~	lavg	А	×	0	0	0	•
	Frequency	F	Hz	•	•	•	•	•
	Active power P1	P1	W	•	×	×	•	•
	Active power P2	P2	W	×	×	×	0	•
	Active power P3	P3	W	×	×	×	0	•
	Total active power Pt	Р	W	•	•	•	0	•
	Reactive power Q1	Q1	var	•	×	×	•	•
	Reactive power Q2	Q2	var	×	×	×	0	•
	Reactive power Q3	Q3	var	×	×	×	0	٠
	Total reactive power Qt	Q	var	•	•	•	0	•
	Apparent power S1	S1	VA	•	×	×	•	•
	Apparent power S2	S2	VA	×	×	×	0	•
	Apparent power S3	S3	VA	×	×	×	0	•
	Total apparent power St	S	VA	•	•	•	0	•
	Power factor PF1	PF1		•	×	×	•	•
	Power factor PF2	PF2		×	×	×	0	•
	Power factor PF3	PF3		×	×	×	0	•
	Total power factor PFt	PF		•	•	•	0	•
	Power angle φ1	φ1	o	•	×	×	•	•
	Power angle φ2	φ2	0	×	×	×	0	•
	Power angle φ3	ф3	0	×	×	×	0	•
	Total power angle φt	ф	0	•	•	•	0	•
	THD of phase voltage Up1	U1%	%THD	•	×	×	•	•
	THD of phase voltage Up2	U2%	%THD	×	×	×	0	•
	THD of phase voltage Up3	U3%	%THD	×	×	×	0	•
	THD of phase current I1	11%	%THD	•	•	•	•	•
	THD of phase current I2	12%	%THD	×	0	•	0	•
	THD of phase current I3	13%	%THD	×	0	•	0	•

 \bullet – supported \circ – calculated × – not supported

	Basic measurements	Designat.	Unit	1b	3b	Зи	4b	4u
Phase-	Phase-to-phase voltage U12	U12	V	×	٠	٠	0	•
to-phase	Phase-to-phase voltage U23	U23	V	×	•	•	0	•
	Phase-to-phase voltage U31	U31	V	×	•	•	0	•
	Average phase-to-phase voltage Upp~	U	V	×	•	•	0	•
	Phase-to-phase angle φ12	ф12	0	×	×	×	0	•
	Phase-to-phase angle φ23	ф23	0	×	×	×	0	•
	Phase-to-phase angle φ31	ф31	0	×	×	×	0	•
	THD of phase-to-phase voltage THDU12	U12%	%THD	×	٠	٠	0	•
	THD of phase-to-phase voltage THDU23	U23%	%THD	×	٠	٠	0	•
	THD of phase-to-phase voltage THDU31	U31%	%THD	×	٠	٠	0	•
Energy	Counters 1–4	E1, E2,	Wh VAh	•	٠	٠	•	•
		E3, E4	varh					
	Active tariff	Atar		•	•	•	•	•
MD	MD current I1	11	А	•	٠	٠	•	•
Values	MD current I2	12	А	×	0	٠	0	•
	MD current I3	13	А	×	0	٠	0	٠
	Active power total (Pt) - (positive)	Pt	W	•	٠	٠	•	•
	Active power total (Pt) - (negative)	Pt	W	•	٠	٠	•	٠
	Reactive power total (Qt) - L	Qt	var	•	•	٠	•	•
	Reactive power total (Qt) - C	Qt	var	•	•	٠	•	•
	Apparent power total (St)	St	VA	•	٠	٠	•	•

• – supported \circ – calculated × – not supported

Explanation of basic concepts

Sample factor M_V

A meter measures all primary quantities with sample frequency which cannot exceed a certain number of samples in a time period. Based on these limitations (128 sample/per at 65Hz) a sample factor is calculated. A sample factor (M_v), depending on frequency of a measured signal, defines a number of periods for a measurement calculation and thus a number of harmonics considered in calculations.

Average interval MP

Due to readability of measurements from communication or LCD (not supported on Supervision Relay SR100), an Average interval (MP) is calculated with regard to the measured signal frequency. The Average interval (see chapter Average interval) defines refresh rate of displayed measurements based on a sampling factor.

Power and energy flow

Figures below show the flow of active power, reactive power and energy for 4u connection. Display of energy flow direction can be adjusted according to connection and operation requirements by changing the Energy flow direction settings.

Calculation and display of measurements

This chapter deals with capture, calculation and display of all supported quantities of measurement. Only the most important equations are described; however, all of them are shown in a chapter *Equations* with additional descriptions and explanations.

PLEASE NOTE

Calculation and display of measurements depend on the connection used. For more detailed information see chapter Survey of supported measurements.

Present values

A PLEASE NOTE

Since measurement support depends on connection mode some display groups can be combined in to one, within Measurements menu.

PLEASE NOTE

Display of present values depends on connection mode. Therefore display organization slightly differs from one connection mode to another.

All measuring instruments may not support all the measurements. For overview of supportive instruments please see Chapter <u>Selection of available quantities</u> on page 61

Voltage

The device measurements:

- real effective (rms) value of all phase voltages (U1, U2, U3), phase-to-phase voltages (U12, U23, U31) and neutral to earth voltage (Un).
- Average phase voltage (U \checkmark) and average phase-to-phase voltage (U \triangle)
- Negative and zero sequence unbalance ratio (Uu, U0)
- Phase and phase-to-phase voltage angles (ϕ 1-3, ϕ 12, ϕ 13, ϕ 23)

$$U_{f} = \sqrt{\frac{\sum_{n=1}^{N} u_{n}^{2}}{N}} \quad U_{xy} = \sqrt{\frac{\sum_{n=1}^{N} (u_{xn} - u_{yn})^{2}}{N}}$$

All voltage measurements are available on communication.

Current

Device measures

- real effective (rms) value of phase currents and neutral measured current (Inm), connected to current inputs
- Neutral calculated current (Inc), Neutral error current (Ie = |Inm Inc|),
- Phase angle between Neutral voltage and Neutral Current (φIn), Average current (Ia) and a sum of all phase currents (It)

$$I_{RMS} = \sqrt{\frac{\sum_{n=1}^{N} i_n^2}{N}}$$

All current measurements are available on communication.

Active, reactive and apparent power

Active power is calculated from instantaneous phase voltages and currents. All measurements are seen on communication. For more detailed information about calculation see chapter <u>Appendix C - Equations</u> on page 79. There are two different methods of calculating reactive power. See chapter <u>Reactive power and energy</u> <u>calculation</u> on page 26.

Power factor and power angle

Power angle (or displacement Power Factor) is calculated as quotient of active and apparent power for each phase separately ($\cos\varphi_1$, $\cos\varphi_2$, $\cos\varphi_3$) and total power angle ($\cos\varphi_T$). It represents angle between first (base) voltage harmonic and first (base) current harmonic for each individual phase. Total power angle is calculated from total active and reactive power (see equation for Total power angle, chapter *Equations*). A symbol for a coil (positive sign) represents inductive load and a symbol for a capacitor (negative sign) represents capacitive load.

Presentation of PF:

Load	С	\rightarrow		\leftarrow	L
Angle [°]	-180	-90	0	+90	+180 (179.99)
PF	-1	0	1	0	-1

Example of analogue output for PF:

Frequency

Network frequency is calculated from time periods of measured voltage. Instrument uses synchronization method, which is highly immune to harmonic disturbances.

Device always synchronizes to a phase voltage *U1*. If signal on that phase is too low it (re)synchronizes to next phase. If all phase voltages are low (e.g. short circuit) device synchronizes to phase currents. If there is no signal present on any voltage or current channels, device shows frequency 0 Hz.

Energy counters

Three ways of Energy - counters display are available:

- by individual counter,
- by tariffs for each counter separately and

At a display of measured counter by tariffs, the sum in the upper line depends on the tariffs set in the instrument. There are two different methods of calculating reactive energy. See chapter <u>Reactive power and energy</u> <u>calculation</u> on page 26.

Additional information, how to set and define a counter quantity is explained in chapter *Energy* on page 32.

THD – Total harmonic distortion

THD is calculated for phase currents, phase and phase-to-phase voltages and is expressed as percent of high harmonic components regarding RMS value or relative to first harmonic.

Instrument uses measuring technique of true RMS values that assures exact measurements with the presence of high harmonics up to 63st harmonic.

Average interval for min. max. values

Min. and max. values often require special averaging period, which enables or disables detection of short measuring spikes. With this setting is possible to set averaging from 1 period to 256 periods.

TECHNICAL DATA

In following chapter all technical data regarding operation of device is presented.

Accuracy

Accuracy is presented as percentage of reading of the measured value except when it is stated as an absolute value.

Measured values	Accuracy (± % of range)
Current Rms	0.5
Voltage Rms P-N and P-P	0.5
Power (P, Q, S)	0.5
Power factor (PF)	0.5
Frequency (f)	10 mHz
P-N and P-P angle	0.5°
THD (U), THD (I) (0 400 %)	0.5
Active energy	Class 1
Reactive energy	Class 2

Measurement inputs

Frequency

Nominal frequency range	45 65 Hz, 400 Hz
Measuring frequency range	16 400 Hz *
* For frequency measurement only	

Voltage measurements

Measuring range (auto)	10 500 V _{LN}
Nominal value (U _N)	500 VLN , 866 VLL
Min. voltage for sync.	Settings from starting voltage
	for all SYNC *
Min. measurement	Settings from starting voltage
	for all powers *
Max. measured value (cont.)	600 V _{LN} ; 1000 V _{LL}
Max. allowed value	$1.2 \times U_N$ permanently
	2 × U _N ; 10 s
Consumption	$< U^2 / 3.3 M\Omega$ per phase
Input impedance	3.3 MΩ per phase

* Starting voltage is set by setting software MiQen>settings>general

Measuring range (auto)	0.01 12.5 A
Nominal current (I _N)	1 A / 5 A (defined by software setting)
Min. measurement	Settings from starting current for all
	powers *
Max. measured value	20 I _N (I _N = 1 A)
	$4 I_N (I_N = 5 A)$
	sinusoidal
Max. allowed value (thermal)	12.5 A; continuous
(acc. to IEC/EN 60 688)	20 A; 60 s
	100A; 1 s
Consumption	$< I^2 \times 0.01 \Omega$ per phase

*Starting current is set by setting software MiQen>settings>general

Power supply

Nominal voltage AC	48 276 V
Nominal frequency	45 65 Hz
Nominal voltage DC	20 300 V
Consumption	< 8 VA
Power-on transient current	< 20 A; 1 ms

System:

Voltage inputs can be connected either directly to low-voltage network or via a VT to higher voltage network. Current inputs can be connected either directly to low-voltage network or shall be connected to network via a corresponding CT (with standard 1 A or 5 A outputs).

Connection

Supervision relay SR100 is equipped with screw terminals for measuring voltages/current, auxiliary power supply, communication and I/O modules.

PLEASE NOTE

Stranded wire must be used with insulated end sleeve to assure firm connection.

Terminals	Max. conductor	Max. conductor cross-sections		
Voltage inputs (4)	2.5 mm2	with pin terminal		
	4 mm2	solid wire		
Current inputs (6)	2.5 mm2	with pin terminal		
	4 mm2	solid wire		
Supply (2)	2.5 mm2	with pin terminal		
	4 mm2	solid wire		
Com (3), I/O (8)	2.5 mm2	with pin terminal		
	4 mm2	solid wire		

🙊 Iskra

Connection table

Function			Connection	Comment
		IL1	1/3	
	AC current	IL2	4/6	🛕 CAT III 600V
		IL3	7/9	
Measuring input		UL1	2	
	AC voltage	UL2	5	
	AC VOILage			
		UN	11	
	1/0 1	+/~	15	
	1/01	-/~	16	
	1/0.2	+/~	17	
	1/0 2	-/~	18	Relay output
inputs / outputs	+/	+/~	19	48V DC/AC
	1/0 3	-/~	20	1000 IIIA
	1/0.4	+/~	/~ 21	
	1/0 4	-/~	22	
Auxiliary power supply		+ / ~ (L)	13	
		- / ~ (N)	14	
		Rx / A / CAN-H	23	
Communication	RS232/RS485/CANopen	GND / NC / NC	24	
		Tx / B / CAN-L	25	

Communication

Serial communication:	RS232	RS485 CAN		
Connection type	Direct	Network Netwo		
Connection terminals	screw terminals			
Function	Settings, measur	ettings, measurements and FW upgrade Measurements		
Insulation	Protection class II, 3.3 kV _{ACRMS} 1 min			
Max. connection length	3 m	2000 m (at CAN depends on baudrate)		
Transfer mode	Asynchronous		Synchronous	
Protocol	M	CAN open		
Transfer rate	2.4 kBaud to 115.2 kBaud		20 to 1000 kBaud	
Number of nodes	/	≤ 32 ≤ 127		

Additionally, Supervision Relay SR100 has a USB communication port, located on the bottom under small circular plastic cover. It is intended for settings ONLY and requires NO auxiliary power supply. When connected to this communication port Supervision Relay SR100 is powered by USB.

🛕 WARNING

USB communication port is provided with only BASIC insulation and can ONLY be used unconnected to aux. supply AND power inputs.

I
I/O Modules		
Electromechanical relay output module		
	Purpose	alarm, pulse, general purpose digital output
	Туре	Electromechanical Relay switch
	Rated voltage	48 V AC/DC (+40% max)
	Max. switching current	1000 mA
	Contact resistance	≤ 100 mΩ (100 mA, 24 V)
	Pulse	Max. 4000 imp/hour
	(if used as pulse output)	Min. length 100 ms
	Insulation voltage	
	Between coil and contact	4000 VDC
	Between contacts	1000 VDC
	Response time	<= 50ms

A PLEASE NOTE

Supervision Relay SR100 response time:

Time from error detection to relay switching on/off is typically below 50ms.

Safety

protection class II
2
CAT III ; 600 V (meas. inputs)
CAT III ; 300 V (aux. supply)
Acc. to EN 61010-1
UAUX↔I/O, COM1: 3510 VACrms
UAUX↔U, I inputs: 3510 VACrms
U, I inputs↔I/O, COM1: 3510 VACrms
PC/ABS
Acc. to UL 94 V-0

Mechanical

Dimensions	W100 × H75× D105 mm		
Max. conductor cross section for terminals	2.5 mm ² with pin terminal		
	4 mm ² solid wire		
Vibration withstand	7 g, 3 100 Hz, 1 oct/min		
	10 cycles in each of three axes		
Shock withstand	300 g, 8 ms pulse		
	6 shocks in each of three axes		
Mounting	Rail mounting 35 × 15 mm		
	acc. to DIN EN 50 022		
Enclosure material	PC/ABS		
Flammability	Acc. to UL 94 V-0		
Housing protection	IP20		
Weight	370 g		

Environmental conditions

Ambient temperature	usage group III		
	-10 0 45 55 °C		
	Acc. to IEC/EN 60 688		
Operating temperature	-30 to +70 °C		
Storage temperature	-40 to +70 °C		
Average annual humidity	≤ 93% r.h.		
Altitude	≤ 2000 m		

Dimensional drawing

APPENDICES

Appendix A

Modbus communication protocol

Modbus is enabled via RS232 and RS485 or USB. The response is the same type as the request.

Two versions of MODBUS register tables are available:

- VERSION 1.0: Compatibility with advanced family of transducers (MT400)
- VERSION 2.0: Compatibility with previous family of transducers (MI500)

Modbus

Modbus protocol enables operation of device on Modbus networks. For device with serial communication the Modbus protocol enables point to point (for example Device to PC) communication via RS232 communication and multi drop communication via RS485 communication. Modbus protocol is a widely supported open interconnect originally designed by Modicon.

The memory reference for input and holding registers is 30000 and 40000 respectively.

	MODBUS				
Parameter	Reg	Register			
	Start	End	туре		
Reserved	30101	30104			
Frequency	30105	30106	T5		
U1	30107	30108	T5		
U2	30109	30110	T5		
U3	30111	30112	T5		
Uavg (phase to neutral)	30113	30114	T5		
ϕ 12 (angle between U1 and U2)	30115		T17		
ϕ 23 (angle between U2 and U3)	30116		T17		
ϕ 31 (angle between U3 and U1)	30117		T17		
U12	30118	30119	T5		
U23	30120	30121	T5		
U31	30122	30123	T5		
Uavg (phase to phase)	30124	30125	T5		
11	30126	30127	T5		
12	30128	30129	T5		
13	30130	30131	T5		
INc	30132	30133	T5		
INm - reserved	30134	30135	T5		
lavg	30136	30137	T5		
ΣΙ	30138	30139	T5		
Active Power Total (Pt)	30140	30141	Т6		
Active Power Phase L1 (P1)	30142	30143	Т6		
Active Power Phase L2 (P2)	30144	30145	Т6		
Active Power Phase L3 (P3)	30146	30147	Т6		

VERSION 2.0: Register table for the actual measurements

(A)	lek	ra
X	1 5 n	a

	MODBUS		
Parameter	Reg	ister	_
	Start	End	Туре
Reactive Power Total (Qt)	30148	30149	T6
Reactive Power Phase L1 (Q1)	30150	30151	T6
Reactive Power Phase L2 (Q2)	30152	30153	T6
Reactive Power Phase L3 (Q3)	30154	30155	T6
Apparent Power Total (St)	30156	30157	T5
Apparent Power Phase L1 (S1)	30158	30159	T5
Apparent Power Phase L2 (S2)	30160	30161	T5
Apparent Power Phase L3 (S3)	30162	30163	T5
Power Factor Total (PFt)	30164	30165	T7
Power Factor Phase 1 (PF1)	30166	30167	T7
Power Factor Phase 2 (PF2)	30168	30169	T7
Power Factor Phase 3 (PF3)	30170	30171	T7
Power Angle Total (atan2(Pt,Qt))	30172		T17
ϕ 1 (angle between U1 and I1)	30173		T17
o 2 (angle between U2 and I2)	30174		T17
φ 3 (angle between U3 and I3)	30175		T17
Internal Temperature	30181		T17
THD HARMONIC DATA		I.	1
U1 THD%	30182		T16
U2 THD%	30183		T16
U3 THD%	30184		T16
U12 THD%	30185		T16
U23 THD%	30186		T16
U31 THD%	30187		T16
11 THD%	30188		T16
12 THD%	30189		T16
13 THD%	30190		T16
I/O STATUS			_
Alarm Status Flags (No. 1 16)	30191		T1
Alarm Status Flags (No. 17 32)	30192		T1
I/O 1 Value	30193		T17
I/O 2 Value	30194		T17
I/O 3 Value	30195		T17
I/O 4 Value	30196		T17
ENERGY			
Energy Counter 1 Exponent	30401		T2
Energy Counter 2 Exponent	30402		T2
Energy Counter 3 Exponent	30403		T2
Energy Counter 4 Exponent	30404		T2
Current Active Tariff	30405		T1
Energy Counter 1	30406	30407	Т3
Energy Counter 2	30408	30409	Т3
Energy Counter 3	30410	30411	Т3
Energy Counter 4	30412	30413	Т3

	MODBUS				
Parameter		Register			
	Start	End	Туре		
DEMAND VALUES					
DYNAMIC DEMAND VALUES					
Time Into Period (minutes)	30501		T1		
11	30502	30503	T5		
12	30504	30505	T5		
13	30506	30507	T5		
Apparent Power Total (St)	30508	30509	T5		
Active Power Total (Pt) - (positive)	30510	30511	T6		
Active Power Total (Pt) - (negative)	30512	30513	T6		
Reactive Power Total (Qt) - L	30514	30515	T6		
Reactive Power Total (Qt) - C	30516	30517	T6		
MAX DEMAND SINCE LAST RESET					
11	30518	30519	T5		
12	30524	30525	T5		
13	30530	30531	T5		
Apparent Power Total (St)	30536	30537	T5		
Active Power Total (Pt) - (positive)	30542	30543	T6		
Active Power Total (Pt) - (negative)	30548	30549	T6		
Reactive Power Total (Qt) - L	30554	30555	T6		
Reactive Power Total (Qt) - C	30560	30561	T6		

Register table for the normalized actual measurements

Devementer	MOD	BUS	100% volue	
Parameter	Register	Туре	100% value	
U1	30801	T16	Un	
U2	30802	T16	Un	
U3	30803	T16	Un	
Uavg (phase to neutral)	30804	T16	Un	
U12	30805	T16	Un	
U23	30806	T16	Un	
U31	30807	T16	Un	
Uavg (phase to phase)	30808	T16	Un	
11	30809	T16	In	
12	30810	T16	In	
13	30811	T16	In	
ΣΙ	30812	T16	lt	
I neutral (calculated)	30813	T16	In	
I neutral (measured)	30814	T16	In	
lavg	30815	T16	In	
Active Power Phase L1 (P1)	30816	T17	Pn	
Active Power Phase L2 (P2)	30817	T17	Pn	
Active Power Phase L3 (P3)	30818	T17	Pn	
Active Power Total (Pt)	30819	T17	Pt	
Reactive Power Phase L1 (Q1)	30820	T17	Pn	
Reactive Power Phase L2 (Q2)	30821	T17	Pn	
Reactive Power Phase L3 (Q3)	30822	T17	Pn	
Reactive Power Total (Qt)	30823	T17	Pt	

	MODB	US	100%
Parameter	Register	Туре	100% value
Apparent Power Phase L1 (S1)	30824	T16	Pn
Apparent Power Phase L2 (S2)	30825	T16	Pn
Apparent Power Phase L3 (S3)	30826	T16	Pn
Apparent Power Total (St)	30827	T16	Pt
Power Factor Phase 1 (PF1)	30828	T17	1
Power Factor Phase 2 (PF2)	30829	T17	1
Power Factor Phase 3 (PF3)	30830	T17	1
Power Factor Total (PFt)	30831	T17	1
CAP/IND P. F. Phase 1 (PF1)	30832	T17	1
CAP/IND P. F. Phase 2 (PF2)	30833	T17	1
CAP/IND P. F. Phase 3 (PF3)	30834	T17	1
CAP/IND P. F. Total (PFt)	30835	T17	1
φ 1 (angle between U1 and I1)	30836	T17	100°
φ 2 (angle between U2 and I2)	30837	T17	100°
φ 3 (angle between U3 and I3)	30838	T17	100°
Power Angle Total (atan2(Pt,Qt))	30839	T17	100°
φ 12 (angle between U1 and U2)	30840	T17	100°
φ 23 (angle between U2 and U3)	30841	T17	100°
(0 31 (angle between U3 and U1)	30842	T17	100°
Frequency	30843	T17	Fn+10Hz
I1 THD%	30845	T16	100%
12 THD%	30846	T16	100%
I3 THD%	30847	T16	100%
U1 THD%	30848	T16	100%
U2 THD%	30849	T16	100%
U3 THD%	30850	T16	100%
U12 THD%	30851	T16	100%
U23 THD%	30852	T16	100%
U31 THD%	30853	T16	100%
MAX DEMAND SINCE L	AST RESET		
Active Power Total (Pt) - (positive)	30854	T16	Pt
Active Power Total (Pt) - (negative)	30855	T16	Pt
Reactive Power Total (Qt) - L	30856	T16	Pt
Reactive Power Total (Qt) - C	30857	T16	Pt
Apparent Power Total (St)	30858	T16	Pt
11	30859	T16	In
12	30860	T16	In
13	30861	T16	In

lskra°

Developmenter	MODBUS		100%]
Parameter	Register	Туре	100% value	
DYNAMIC DEMAND VALUES				1
Active Power Total (Pt) - (positive)	30862	T16	Pt]
Active Power Total (Pt) - (negative)	30863	T16	Pt]
Reactive Power Total (Qt) - L	30864	T16	Pt]
Reactive Power Total (Qt) - C	30865	T16	Pt]
Apparent Power Total (St)	30866	T16	Pt]
11	30867	T16	In]
12	30868	T16	In]
13	30869	T16	In]
ENERGY]
Energy Counter 1	30870	T17		Actual counter
Energy Counter 2	30871	T17		value MOD
Energy Counter 3	30872	T17		20000 is
Energy Counter 4	30873	T17		returned
Active Tariff	30879	T1		
Internal Temperature	30880	T17	100°]
DIRECTIONAL CURF	RENTS]
Directional lavg	30881	T17]
Directional I1	30882	T17]
Directional I2	30883	T17]
Directional I3	30884	T17]
Frequency (wide range) 0.00 – 655.35 Hz	30891	T16]

VERSION 1.0:

Register table for the actual measurements

Devenuetor	MODBUS			
Parameter	Regis	Turne		
	Start	End	туре	
Frequency	30049	30050	T5	
U1	30057	30058	T5	
U2	30059	30060	T5	
U3	30061	30062	T5	
Uavg (phase to neutral)	30063	30064	T5	
ϕ 12 (angle between U1 and U2)	30065		T17	
ϕ 23 (angle between U2 and U3)	30066		T17	
ϕ 31 (angle between U3 and U1)	30067		T17	
U12	30068	30069	T5	
U23	30070	30071	T5	
U31	30072	30073	T5	
Uavg (phase to phase)	30074	30075	T5	
11	30076	30077	T5	
12	30078	30079	T5	
13	30080	30081	T5	
INc	30082	30083	T5	
INm - reserved	30084	30085	T5	
lavg	30086	30087	T5	
ΣΙ	30088	30089	T5	
Active Power Total (Pt)	30090	30091	Т6	
Active Power Phase L1 (P1)	30092	30093	T6	
Active Power Phase L2 (P2)	30094	30095	Т6	
Active Power Phase L3 (P3)	30096	30097	Т6	

L

lskra°

		®
AD	CL	ra
XX		

	I	MODBUS		
Parameter	Regist	ter	Tuno	
	Start	End	туре	
Reactive Power Total (Qt)	30098	30099	T6	
Reactive Power Phase L1 (Q1)	30100	30101	T6	
Reactive Power Phase L2 (Q2)	30102	30103	T6	
Reactive Power Phase L3 (Q3)	30104	30105	T6	
Apparent Power Total (St)	30106	30107	T5	
Apparent Power Phase L1 (S1)	30108	30109	T5	
Apparent Power Phase L2 (S2)	30110	30111	T5	
Apparent Power Phase L3 (S3)	30112	30113	T5	
Power Factor Total (PFt)	30114	30115	T7	
Power Factor Phase 1 (PF1)	30116	30117	T7	
Power Factor Phase 2 (PF2)	30118	30119	T7	
Power Factor Phase 3 (PF3)	30120	30121	T7	
Power Angle Total (atan2(Pt,Qt))	30122		T17	
ϕ 1 (angle between U1 and I1)	30123		T17	
ϕ 2 (angle between U2 and I2)	30124		T17	
ϕ 3 (angle between U3 and I3)	30125		T17	
Internal Temperature	30126		T17	1
THD HARMONIC DA	TA			
U1 THD%	30639		T16	
U2 THD%	30640		T16	
U3 THD%	30641		T16	
U12 THD%	30642		T16	
U23 THD%	30643		T16	
U31 THD%	30644		T16	
I1 THD%	30645		T16	
I2 THD%	30646		T16	
I3 THD%	30647		T16	
ENERGY				
Energy Counter 1 Exponent	30037		T2	
Energy Counter 2 Exponent	30038		T2	
Energy Counter 3 Exponent	30039		T2	Actual counter value
Energy Counter 4 Exponent	30040		T2	is calculated
Current Active Tariff	30133		T1	Counter * 10 Exponent
Energy Counter 1	30134	30135	Т3	
Energy Counter 2	30136	30137	Т3	
Energy Counter 3	30138	30139	Т3	
Energy Counter 4	30140	30141	Т3	

Time Stamp

APPENDICES			skra®		
	MODBUS				
Parameter	Register				
	Start	End	туре		
DEMAND VALUES					
DYNAMIC DEMAND VALUES					
Time Into Period (minutes)	30174		T1		
11	30175	30176	T5		
12	30177	30178	T5		
13	30179	30180	T5		
Apparent Power Total (St)	30181	30182	T5		
Active Power Total (Pt) - (positive)	30183	30184	T6		
Active Power Total (Pt) - (negative)	30185	30186	T6		
Reactive Power Total (Qt) - L	30187	30188	T6		
Reactive Power Total (Qt) - C	30189	30190	T6		
MAX DEMAND SINCE LAST RESE	T				
11	30207	30208	T5		
Time Stamp	30209	30212	T_Time		
12	30213	30214	T5		
Time Stamp	30215	30218	T_Time		
13	30219	30220	T5		
Time Stamp	30221	30224	T_Time		
Apparent Power Total (St)	30225	30226	T5		
Time Stamp	30227	30230	T_Time		
Active Power Total (Pt) - (positive)	30231	30232	T6		
Time Stamp	30233	30236	T_Time		
Active Power Total (Pt) - (negative)	30237	30238	T6		
Time Stamp	30239	30242	T_Time		
Reactive Power Total (Qt) - L	30243	30244	T6		
Time Stamp	30245	30248	T_Time		
Reactive Power Total (Qt) - C	30249	30250	T6		

Register table for the normalized actual measurements

Devenuetor	MOD	BUS	100% value	
Faranieter	Register	Туре	100% value	
U1	30801	T16	Un	
U2	30802	T16	Un	
U3	30803	T16	Un	
Uavg (phase to neutral)	30804	T16	Un	
U12	30805	T16	Un	
U23	30806	T16	Un	
U31	30807	T16	Un	
Uavg (phase to phase)	30808	T16	Un	
11	30809	T16	In	
12	30810	T16	In	
13	30811	T16	In	
ΣΙ	30812	T16	lt	
I neutral (calculated)	30813	T16	In	
I neutral (measured)	30814	T16	In	
lavg	30815	T16	In	
Active Power Phase L1 (P1)	30816	T17	Pn	
Active Power Phase L2 (P2)	30817	T17	Pn	
Active Power Phase L3 (P3)	30818	T17	Pn	
Active Power Total (Pt)	30819	T17	Pt	

30251

30254

T_Time

Devementer	MODE	100% volue	
Parameter	Register	Туре	100% value
Reactive Power Phase L1 (Q1)	30820	T17	Pn
Reactive Power Phase L2 (Q2)	30821	T17	Pn
Reactive Power Phase L3 (Q3)	30822	T17	Pn
Reactive Power Total (Qt)	30823	T17	Pt
Apparent Power Phase L1 (S1)	30824	T16	Pn
Apparent Power Phase L2 (S2)	30825	T16	Pn
Apparent Power Phase L3 (S3)	30826	T16	Pn
Apparent Power Total (St)	30827	T16	Pt
Power Factor Phase 1 (PF1)	30828	T17	1
Power Factor Phase 2 (PF2)	30829	T17	1
Power Factor Phase 3 (PF3)	30830	T17	1
Power Factor Total (PFt)	30831	T17	1

All other MODBUS registers are a subject to change. For the latest MODBUS Register definitions go to ISKRA's web page <u>www.ISKRA.eu</u>.

100% values calculations for normalized measurements

Un =	(R4014)	(R40147 / R40146) * R30015 * R40149				
In =	(R4014	5 / R40144) * R30017 * R40148				
Pn =	Un*In	Un*In				
lt =	In	Connection Mode: 1b				
lt =	3*In	Connection Modes: 3b, 4b, 3u, 4u				
Pt =	Pn	Connection Mode: 1b				
Pt =	3*Pn	Connection Modes: 3b, 4b, 3u, 4u				
Fn =	R40150					

Devementer	MODI	BUS	Values/Dependencies	
Parameter	Register	Туре	values/Dependencies	
Calibration voltage	30015	T4	mV	
Calibration current	30017	T4	mA	

Register table for the basic settings

Register	Content	Туре	Ind	Values / Dependencies	Min	Max	P. Level
40143	Connection Mode	T1	0	No mode	1	5	2
			1	1b - Single Phase			
			2	3b - 3 phase 3 wire balanced			
			3	4b - 3 phase 4 wire balanced			
			4	3u - 3 phase 3 wire unbalanced			
			5	4u - 3 phase 4 wire unbalanced			
40144	CT Secondary	T4		mA			2
40145	CT Primary	T4		A/10			2
40146	VT Secondary	T4		mV			2
40147	VT Primary	T4		V/10			2
40148	Current input range (%)	T16		10000 for 100%	5.00	200.00	2
40149	Voltage input range (%)	T16		10000 for 100%	2.50	100.00	2
40150	Frequency nominal value	T1		Hz	10	1000	2

I

EXAMPLE of calculation using MODBUS registers and their data types:

```
CT Primary= R40145 (Type T4) = 10^2 \times 40 = 8028_{(16)}-> 4000 A/10 = 400 ACT Secondary= R40144 (Type T4) = 10^2 \times 50 = 8032_{(16)}-> 5000 mACal. Current= R30017 (Type T4) = 10^2 \times 50 = 8032_{(16)}-> 5000 mAInput range= R40148 (Type T16) = 10000= 2710_{(16)}-> 100.00 %
```

```
In = (R40145 / R40144) * R30017 * R40148 = (400 / 5) * 5A * 100% =400A
```

Туре	Bit mask	Description
Т1		Unsigned Value (16 bit)
11		Example: 12345 = 3039(16)
T 2		Signed Value (16 bit)
12		Example: -12345 = CFC7(16)
тэ		Signed Long Value (32 bit)
13		Example: 123456789 = 075B CD 15(16)
		Short Unsigned float (16 bit)
T 4	bits # 1514	Decade Exponent(Unsigned 2 bit)
14	bits # 1300	Binary Unsigned Value (14 bit)
		Example: 10000*102 = A710(16)
		Unsigned Measurement (32 bit)
TE	bits # 3124	Decade Exponent(Signed 8 bit)
15	bits # 2300	Binary Unsigned Value (24 bit)
		Example: 123456*10-3 = FD01 E240(16)
		Signed Measurement (32 bit)
тс	bits # 3124	Decade Exponent (Signed 8 bit)
16	bits # 2300	Binary Signed value (24 bit)
		Example: - 123456*10-3 = FDFE 1DC0(16)
		Power Factor (32 bit)
	bits # 3124	Sign: Import/Export (00/FF)
Т7	bits # 2316	Sign: Inductive/Capacitive (00/FF)
	bits # 1500	Unsigned Value (16 bit), 4 decimal places
		Example: 0.9876 CAP = 00FF 2694(16)
		Time (32 bit)
	bits # 3124	1/100s 00 - 99 (BCD)
то	bits # 2316	Seconds 00 - 59 (BCD)
19	bits # 1508	Minutes 00 - 59 (BCD)
	bits # 0700	Hours 00 - 24 (BCD)
		Example: 15:42:03.75 = 7503 4215(16)
		Date (32 bit)
	bits # 3124	Day of month 01 - 31 (BCD)
T10	bits # 2316	Month of year 01 - 12 (BCD)
	bits # 1500	Year (unsigned integer) 19984095
		Example: 10, SEP 2000 = 1009 07D0(16)
T1C		Unsigned Value (16 bit), 2 decimal places
110		Example: 123.45 = 3039(16)
т17		Signed Value (16 bit), 2 decimal places
117		Example: -123.45 = CFC7(16)
T_Str4		Text: 4 characters (2 characters for 16 bit register)
T_Str6		Text: 6 characters (2 characters for 16 bit register)
T_Str8		Text: 8 characters (2 characters for 16 bit register)
T_Str16		Text: 16 characters (2 characters for 16 bit register)
T_Str20		Text: 20 characters (2 characters for 16 bit register)

Data types decoding

⊗ Iskra°

Туре	Bit mask	Description
T_Str40		Text: 40 characters (2 characters for 16 bit register)
T_Time		Time and Date (64 bit)
	bits # 6356	1/100s 00 - 99 (BCD)
	bits # 5548	Seconds 00 - 59 (BCD)
	bits # 4740	Minutes 00 - 59 (BCD)
	bits # 3932	Hours 00 - 24 (BCD)
	bits # 3124	Day of month 01 - 31 (BCD)
	bits # 2316	Month of year 01 - 12 (BCD)
	bits # 1500	Year (unsigned integer) 19984095
		Example: 15:42:03.75, 10. SEP 2000 stored as 7503 4215 1009 07D0(16)

APPENDIX B

OBJECT DICTIONARY OF Supervision Relay SR100

Index (hex)	Sub Index (dec)	Name	Туре	Attr	Default	Comment
1000	0	Device type	U32	R	0x400191	Device with analog outputs (CiA 401)
1001	0	Error register	U8	R	0	Error bits (generic error and heartbeat error supported at EMCY message)
1002	0	Manufacturer Status register	U31	RW	0	
1005	0	COB-ID SYNC	U32	R	0000080	Device doesn't generate SYNC, 11- bit CAN-ID
1008	0	Manufacturer device name	Str	R	"ISKRA SR100"	"ISKRA SR100"
1009	0	Manufacturer hardware version	Str	R	SR100_HW0001"	126-byte ASCII string
100A	0	Manufacturer software version	Str	R	"SR100_SW0001"	126-byte ASCII string
100B	0	NODE ID	U32	RW	31	Defines Node ID of the Device
1014	0	COB-ID emergency message	U32	RW	80h + Node ID	COB-ID of the Emergency message
1016	0	Consumer heartbeat time	U32	RW	20000	The value given in multiples of 1 ms (20 s)
1017	0	Producer heartbeat time	U32	RW	10000	The value given in multiples of 1 ms (10 s)
1018	0	Identity object - Highest sub-index supported	U8	R	4	Provides general identification information of the CANopen device
	1	Vendor-ID	U32	R	1234AAAAh	Assigned uniquely to manufacturers by CiA
	2	Product code	U32	R	0000001h	Profile- or manufacturer-specific
	3	Revision number	U32	R	0000001h	Profile- or manufacturer-specific
	4	Serial number	U32	R	00000001h	Profile- or manufacturer-specific
1800		TPDO1 communication parameter				Transmit PDO used for short
	0	Highest sub-index supported	U8	R	02h	
	1	COB-ID used by TPDO1	U32	w	0000 01A0	0000 0180h + Node ID (32 - 0x20 default)
	2	Transmission type	U8	R	01h	Synchronous (cyclic every sync)
1802		TPDO3 communication parameter				Transmit PDO used for long measurements on SR100
	0	Highest sub-index supported	U8	R	02h	
	1	COB-ID used by PDO	U32	w	0000 03A0	0000 0380h + Node ID (32 - 0x20 default)
	2	Transmission type	U8	RW	0Ah	Synchronous (cyclic every 10th sync)
1400		TPDO1 manning parameters				
1700		Number of mapped application objects in				
	0	TPD01	U8	R	2	
	1	1st application object	U32	R	23000140h	Object 0x2300, subindex 0x01, consisting of 64 bits

l

+		®
AD	ICV	
X	13n	a

.....

Index (hex)	Sub Index (dec)	Name	Туре	Attr	Default	Comment
1A02		TPDO3 mapping parameters				
	0	Number of mapped application objects in TPDO3	U8	R	2	
	1	1st application object	U32	R	24000140h	Object 02400, subindex 0x01, consisting of 64 bits
2300		TPDO1 Multiplex data structure				SR100 defined entry which is transferring TPDO1 multiplexed data
	0	Number of elements	U8	R	1	Number of elements
	1	TPDO1 Mux	U64	R		8 Bytes Multiplex data for TPDO1 transfer (Byte 0 is Index, Bytes 1-6 contains multiplexed data, Byte 7 not used)
2400		TPDO3 Multiplex data structure				SR100 defined entry which is transferring TPDO1 multiplexed data
	0	Number of elements	U8	R	1	Number of elements
	1	TPDO1 Mux	U64	R		8 Bytes Multiplex data for TPDO1 transfer (Byte 0 is Index, Bytes 1-6 contains multiplexed data, Byte 7 not used)
2A00		Manufacturer specific area				CAN Open device settings area
	0	Baudrate	U8	RW	7	0=20kBd, 1=50kBd, 2=100kBd, 3=125kBd, 4=250kBd, 5=500kBd, 6=800kBd, 7=1000kBd
2B00		SDO OD Settings entries		_		
	0	Number of entries	016	R	5	SR100 Protection data
	1	16 bit value	016	R/W		Nominal Voltage (%)
	2	16 bit value	016	R/W		Nominal Fraguency
	3	16 bit value	010			Assigned Output
	4 5	16 bit value	1116			Reserved
	5		010	117 VV		
6400		6400h: Read analogue input 8-bit.				SR100 Alarms presented as 8-bit integer analogue input sent over TPDO1
	0	Number of entries	U8	R		
	1	analogue input 8-bit	INT8	R		Alarm: Over/under voltage 1/2
	2	analogue input 8-bit	INT8	R		Alarm: Over/under frequency 1/2
	3	analogue input 8-bit	INT8	R		Alarm: Directional power/Power underrun
	4	analogue input 8-bit	INT8	R		Imbalances
	5	analogue input 8-bit	INT8	R		Other asymmetry

Index (hex)	Sub Index (dec)	Name	Туре	Attr	Default	Comment
						SR100 measured (normalized) data are
6401		6401h: Read analogue input 16-bit				presents as 16-bit integer analogue
						input sent over TPDO1 and TPDO3
	0	Number of entries	U8	R	53	
	1	analogue input 16-bit	INT16	R		
	2	analogue input 16-bit	INT16	ĸ		02
	3	analogue input 16-bit	INT16	к		03
	4	analogue input 16-bit		к р		012
	5	analogue input 16-bit	INT16	R		1131
	7	analogue input 16-bit	INT16	R		11
	, 8	analogue input 16-bit	INT16	R		12
	9	analogue input 16-bit	INT16	R		13
	10	analogue input 16-bit	INT16	R		Active Power Total (Pt)
-	11	analogue input 16-bit	INT16	R		Reactive Power Total (Qt)
-	12	analogue input 16-bit	INT16	R		Apparent Power Total (St)
	13	analogue input 16-bit	INT16	R		Power Factor Total (PFt)
	14	analogue input 16-bit	INT16	R		U1 THD%
	15	analogue input 16-bit	INT16	R		U2 THD%
	16	analogue input 16-bit	INT16	R		U3 THD%
	17	analogue input 16-bit	INT16	R		U12 THD%
	18	analogue input 16-bit	INT16	R		U23 THD%
	19	analogue input 16-bit	INT16	R		U31 THD%
	20	analogue input 16-bit	INT16	R		I1 THD%
	21	analogue input 16-bit	INT16	R		I2 THD%
	22	analogue input 16-bit	INT16	R		I3 THD%
	23	analogue input 16-bit	INT16	R		Voltage Unbalances
	24	analogue input 16-bit	INT16	R		Phase Imbalance
	25	analogue input 16-bit	INT16	R		Phase Shift L1
	26	analogue input 16-bit	INT16	R		Phase Shift L2
	27	analogue input 16-bit	INT16	R		Phase Shift L3
	28	analogue input 16-bit	INT16	R		ROCOF df/dt
	29	analogue input 16-bit	INT16	R		I/O 1 Value
	30	analogue input 16-bit	INT16	R		I/O 2 Value
	31	analogue input 16-bit	INT16	R		I/O 3 Value
	32	analogue input 16-bit	INT16	R		I/O 4 Value
	33	analogue input 16-bit	INT16	R		Alarm: Overvoltage 1
-	34	analogue input 16-bit	INT16	R		Alarm: Overvoltage 2
	35	analogue input 16-bit	INT16	R		Alarm: Under voltage 1
	36	analogue input 16-bit	INT16	R		Alarm: Under voltage 2
	37	analogue input 16-bit	INT16	R		Alarm: Over frequency 1
	38	analogue input 16-bit	INT16	R		Alarm: Over frequency 2
-	39	analogue input 16-bit	INT16	ĸ		Alarm: Under frequency 1
-	40	analogue input 16-bit	INT16	к		Alarm: Under frequency 2
	41	analogue input 16-bit	INT16	ĸ		Alarm: Directional power 1
	42	analogue input 16-bit	INT16	K D		Alarm: Directional power 2
	45	analogue input 16 bit				Alarm: Power underrun 2
	44 75	analogue input 16-bit	INIT16	D D		Alarm: Voltage Unbalances
	45	analogue input 16-bit	INT16	R		Alarm: Phase imbalance 1
<u> </u>	40 ⊿7	analogue input 16-bit	INT16	R		Alarm: Phase imbalance 2
	48	analogue input 16-bit	INT16	R		Reserved Alarm: Phase shift
	49	analogue input 16-bit	INT16	R		Reserved Alarm: ROCOF df/dt
		Succession and the second s				Reserved Alarm: Time-dependent
	50	analogue input 16-bit	INT16	R		under voltage A
	51	analogue input 16-bit	INT16	R		under voltage B

1		®
A	CV	NO I
~		

Index	Sub Index	Name	Туре	Attr	Default	Comment
(hex)	(dec)					
						SR100 measured (absolute) data
6404		Read manufacturer specific analogue				are represented as 32-bit float
0404		input				(IEEE754) analogue input sent over
						TPDO3
	0	Number of entries	U8	R	0x80	0-199 entries
	1	32-bit float analog input	float	R		Frequency
	2	32-bit float analog input	float	R		U1
	3	32-bit float analog input	float	R		U2
	4	32-bit float analog input	float	R		U3
	5	32-bit float analog input	float	R		Uavg (phase to neutral)
	6	32-bit float analog input	float	R		U12
	7	32-bit float analog input	float	R		U23
	8	32-bit float analog input	float	R		U31
	9	32-bit float analog input	float	R		Uavg (phase to phase)
	10	32-bit float analog input	float	R		fi12 (angle between U1 and U2)
	11	32-bit float analog input	float	R		fi23 (angle between U2 and U3)
	12	32-bit float analog input	float	R		fi31 (angle between U3 and U1)
	13	32-bit float analog input	float	R		11
	14	32-bit float analog input	float	R		12
	15	32-bit float analog input	float	R		13
	16	32-bit float analog input	float	R		Active Power Phase L1 (P1)
	17	32-bit float analog input	float	R		Active Power Phase L2 (P2)
	18	32-bit float analog input	float	R		Active Power Phase L3 (P3)
	19	32-bit float analog input	float	R		Active Power Total (Pt)
	20	32-bit float analog input	float	R		Reactive Power Phase L1 (Q1)
	21	32-bit float analog input	float	R		Reactive Power Phase L2 (Q2)
	22	32-bit float analog input	float	R		Reactive Power Phase L3 (Q3)
	23	32-bit float analog input	float	R		Reactive Power Total (Qt)
	24	32-bit float analog input	float	R		Apparent Power Phase L1 (S1)
	25	32-bit float analog input	float	R		Apparent Power Phase L2 (S2)
	26	32-bit float analog input	float	R		Apparent Power Phase L3 (S3)
	27	32-bit float analog input	float	R		Apparent Power Total (St)
	28	32-bit float analog input	float	R		Power Factor Phase 1 (PF1)
	29	32-bit float analog input	float	R		Power Factor Phase 2 (PF2)
	30	32-bit float analog input	float	R		Power Factor Phase 3 (PF3)
	31	32-bit float analog input	float	R		Power Factor Total (PFt)
	32	32-bit float analog input	float	R		fi1 (angle between U1 and I1)
	33	32-bit float analog input	float	R		fi2 (angle between U2 and I2)
	34	32-bit float analog input	float	R		fi3 (angle between U3 and I3)
	35	32-bit float analog input	float	R		Power Angle Total (atan2(Pt,Qt))
	36	32-bit float analog input	float	R		Energy Counter 1
	37	32-bit float analog input	float	R		Energy Counter 2
	38	32-bit float analog input	float	R		Energy Counter 3
	39	32-bit float analog input	float	R		Energy Counter 4

TPDO1 Mapping Structure:

Supervision Relay SR100 uses multiplexed structure for data transferred inside TPDO1 and TPDO3. First byte (Byte 0) inside CAN 8-byte data field designates index of the multiplexed package being sent. TPDO1 contains 5 different packages and TPDO3 contains 50 different multiplexed packages. Bytes 1-6 inside CAN telegram data field are presenting multiplexed data. Byte 7 is never used.

CAN Byte 0	CAN Bytes 1-6	Description	Modbus address	Type (Modbus)	Type (CAN)	Multiplier
MUX index	Data bytes					to multiply the received value
0	1,2	Protocol ID, always 4600				
0	3,4	Frequency	30843	T17	int16	% of nominal Frequency
0	5,6	U1	30801	T16	int16	% of nominal Voltage
0	1,2	U2	30802	T16	int16	% of nominal Voltage
1	3,4	U3	30803	T16	int16	% of nominal Voltage
1	5,6	U12	30805	T16	int16	% of nominal Voltage
1	1,2	U23	30806	T16	int16	% of nominal Voltage
2	3,4	U31	30807	T16	int16	% of nominal Voltage
2	5,6	11	30809	T16	int16	% of nominal Current
2	1,2	12	30810	T16	int16	% of nominal Current
3	3,4	13	30811	T16	int16	% of nominal Current
3	5,6	Active Power Total (Pt)	30819	T17	int16	% of nominal total Power
3	1,2	Reactive Power Total (Qt)	30823	T17	int16	% of nominal total Power
4	3,4	Apparent Power Total (St)	30827	T16	int16	% of nominal total Power
4	5,6	Power Factor Total (PFt)	30835	T17	int16	
5	1	Alarm: Overvoltage 1 triggered	37021	T1	int8 (bit 0)	Mask: H01
	1	Alarm: Overvoltage 2 triggered	37022	T1	int8 (bit 1)	Mask: H02
	1	Alarm: Undervoltage 1 triggered	37023	T1	int8 (bit 2)	Mask: H04
	1	Alarm: Undervoltage 2 triggered	37024	T1	int8 (bit 3)	Mask: H08
	1	Alarm: Overfrequency 1 triggered	37025	T1	int8 (bit 4)	Mask: H10
	1	Alarm: Overfrequency 2 triggered	37026	T1	int8 (bit 5)	Mask: H20
	1	Alarm: Underfrequency 1 triggered	37027	T1	int8 (bit 6)	Mask: H40
	1	Alarm: Underfrequency 2 triggered	37028	T1	int8 (bit 7)	Mask: H80
5	2	Alarm: Directional power 1 triggered	37029	T1	int8 (bit 0)	Mask: H01
	2	Alarm: Directional power 2 triggered	37030	T1	int8 (bit 1)	Mask: H02
	2	Alarm: Power underrun 1 triggered	37031	T1	int8 (bit 2)	Mask: H04
	2	Alarm: Power underrun 2 triggered	37032	T1	int8 (bit 3)	Mask: H08
	2	Alarm: Voltage Unbalances triggered	37033	T1	int8 (bit 4)	Mask: H10
	2	Alarm: Phase imbalance 1 triggered	37034	T1	int8 (bit 5)	Mask: H20
	2	Alarm: Phase imbalance 2 triggered	37035	T1	int8 (bit 6)	Mask: H40
	2	Reserved Alarm: Phase shift triggered	37036	T1	int8 (bit 7)	Mask: H80
5	3	Reserved Alarm: ROCOF df/dt triggered	37037	T1	int8 (bit 0)	Mask: H01

lskra°

TPDO3 Mapping Structure:

CAN Bute 0	CAN Bytes 1-6	Description	Modbus	Type	Туре	Multiplier (to multiply th	e Unit
Бусе О			address	(ivioabus)	(CAN)		
index	Data bytes						
0	1,2	Protocol ID, always 4500					
0	3,4,5,6	Frequency	32498	T float	float		Hz
1	1,2,3,4	U1	32500	T float	float		V
2	1,2,3,4	U2	32502	T float	float		V
3	1,2,3,4	U3	32504	T float	float		V
4	1,2,3,4	Uavg (phase to neutral)	32506	T float	float		V
5	1,2,3,4	U12	32508	T_float	float		V
6	1,2,3,4	U23	32510	T_float	float		V
7	1,2,3,4	U31	32512	T_float	float		V
8	1,2,3,4	Uavg (phase to phase)	32514	T_float	float		V
9	1,2,3,4	fi12 (angle between U1 and U2)	32578	T_float	float		0
10	1,2,3,4	fi23 (angle between U2 and U3)	32580	T_float	float		o
11	1,2,3,4	fi31 (angle between U3 and U1)	32582	T_float	float		o
12	1,2,3,4	11	32516	T_float	float		А
13	1,2,3,4	12	32518	T_float	float		А
14	1,2,3,4	13	32520	T_float	float		A
15	1,2,3,4	Active Power Phase L1 (P1)	32530	T_float	float		W
16	1,2,3,4	Active Power Phase L2 (P2)	32532	T_float	float		W
17	1,2,3,4	Active Power Phase L3 (P3)	32534	T_float	float		W
18	1,2,3,4	Active Power Total (Pt)	32536	T_float	float		W
19	1,2,3,4	Reactive Power Phase L1 (Q1)	32538	T_float	float		var
20	1,2,3,4	Reactive Power Phase L2 (Q2)	32540	T_float	float		var
21	1,2,3,4	Reactive Power Phase L3 (Q3)	32542	T_float	float		var
22	1,2,3,4	Reactive Power Total (Qt)	32544	T_float	float		var
23	1,2,3,4	Apparent Power Phase L1 (S1)	32546	T_float	float		VA
24	1,2,3,4	Apparent Power Phase L2 (S2)	32548	T_float	float		VA
25	1,2,3,4	Apparent Power Phase L3 (S3)	32550	T_float	float		VA
26	1,2,3,4	Apparent Power Total (St)	32552	T_float	float		VA
27	1,2,3,4	Power Factor Phase 1 (PF1)	32562	I_float	float		
28	1,2,3,4	Power Factor Phase 2 (PF2)	32564	I_float	float		
29	1,2,3,4	Power Factor Phase 3 (PF3)	32566	T_float	float		
30	1,2,3,4	Power Factor Total (PFt)	32568	I_float	float		
31	1,2,3,4	fil (angle between U1 and I1)	32570	I_float	float		-
32	1,2,3,4	fi2 (angle between U2 and I2)	32572	I_float	float		•
34	1,2,3,4	Power Angle Total	32574	T_float	float		•
35	1234	Energy Counter 1	32638	T float	float		Wah
36	1.2.3.4	Energy Counter 2	32640	T float	float		Wah
37	1.2.3.4	Energy Counter 3	32642	T float	float		Wah
38	1.2.3.4	Energy Counter 4	32644	T float	float		Wah
39	1.2	U1 THD%	30182		int16	% of nominal value	
39	3.4	U2 THD%	30183	T16	int16	% of nominal value	
39	5.6	U3 THD%	30184	T16	int16	% of nominal value	1
40	1,2	U12 THD%	30185	T16	int16	% of nominal value	1
40	3,4	U23 THD%	30186	T16	int16	% of nominal value	1
40	5,6	U31 THD%	30187	T16	int16	% of nominal value	
41	1,2	I1 THD%	30188	T16	int16	% of nominal value	
41	3,4	12 THD%	30189	T16	int16	% of nominal value	
41	5.6	I3 THD%	30190	T16	int16	% of nominal value	

CAN		Description	Modbus	Туре	Туре	Multiplier (to multiply the Unit
Byte 0	CAN Bytes 1-6		address	(Modbus)	(CAN)	received value with)
Mux index	Data bytes					
42	1,2	Voltage Unbalances	37001	T16	int16	% of nominal value
42	3,4	Phase Imbalance	37002	T16	int16	% of nominal value
42	5,6	Phase Shift L1	37003	T17	int16	% of nominal value
43	1,2	Phase Shift L2	37004	T17	int16	% of nominal value
43	3,4	Phase Shift L3	37005	T17	int16	% of nominal value
43	5,6	ROCOF df/dt	37006	T17	int16	% of nominal value
44	1,2	I/O 1 Value	30193	T17	int16	0=Off, 1=On
44	3,4	I/O 2 Value	30194	T17	int16	0=Off, 1=On
44	5,6	I/O 3 Value	30195	T17	int16	0=Off, 1=On
45	1,2	I/O 4 Value	30196	T17	int16	0=Off, 1=On
45	3.4		37021	Т1	int16	0=OK, Bit i-1=Alarm Phase i,
45	5,4	Alarm: Overvoltage 1	57021	11	intio	Bit 4=Alarm Avg
45	5.6		37022	Т1	int16	0=OK, Bit i-1=Alarm Phase i,
45	5,0	Alarm: Overvoltage 2	57022		mero	Bit 4=Alarm Avg
46	12		37023	T1	int16	0=OK, Bit i-1=Alarm Phase i,
	1,2	Alarm: Undervoltage 1	57625			Bit 4=Alarm Avg
46	3.4		37024	T1	int16	0=OK, Bit i-1=Alarm Phase i,
	3,1	Alarm: Undervoltage 2	0/02:			Bit 4=Alarm Avg
46	5,6	Alarm: Overfrequency 1	37025	T1	int16	0=OK, 1=Alarm
47	1,2	Alarm: Overfrequency 2	37026	T1	int16	0=OK, 1=Alarm
47	3,4	Alarm: Underfrequency 1	37027	T1	int16	0=OK, 1=Alarm
47	5,6	Alarm: Underfrequency 2	37028	T1	int16	0=OK, 1=Alarm
48	1,2	Alarm: Directional power 1	37029	T1	int16	0=OK, 1=Alarm
48	3,4	Alarm: Directional power 2	37030	T1	int16	0=OK, 1=Alarm
48	5,6	Alarm: Power underrun 1	37031	T1	int16	0=OK, 1=Alarm
49	1,2	Alarm: Power underrun 2	37032	T1	int16	0=OK, 1=Alarm
49	3,4	Alarm: Voltage Unbalances	37033	T1	int16	0=OK, 1=Alarm
49	5,6	Alarm: Phase imbalance 1	37034	T1	int16	0=OK, 1=Alarm
50	1,2	Alarm: Phase imbalance 2	37035	T1	int16	0=OK, 1=Alarm
50	3,4	Reserved Alarm: Phase shift	37036	T1	int16	0=OK, Bit i-1=Alarm Phase i
50	5,6	Reserved Alarm: ROCOF df/dt	37037	T1	int16	0=OK, 1=Alarm

APPENDIX C

Equations

Definitions of symbols

No	Symbol	Definition
1	MP	Average interval
2	Uf	Phase voltage (U1, U2 or U3)
3	Uff	Phase-to-phase voltage (U12, U23 or U31)
4	Ν	Total number of samples in a period
5	n	Sample number ($0 \le n \le N$)
6	х, у	Phase number (1, 2 or 3)
7	in	Current sample n
8	ufn	Phase voltage sample n
9	uffn	Phase-to-phase voltage sample n
10	φf	Power angle between current and phase voltage f (ϕ_1 , ϕ_2 or ϕ_3)
11	Uu	Voltage unbalance
12	Uc	Agreed supply voltage

Voltage

Current

Power

$P_{f} = \frac{1}{N} \cdot \sum_{n=1}^{N} \left(u_{fn} \cdot i_{fn} \right)$	Active power by phases N – a number of periods n – index of sample in a period f – phase designation
$\mathbf{P}_{\mathrm{t}} = \mathbf{P}_{1} + \mathbf{P}_{2} + \mathbf{P}_{3}$	t – total power 1, 2, 3 – phase designation
SignQ _f (ϕ) $\phi \in [0^{\circ} - 180^{\circ}] \Rightarrow$ SignQ _f (ϕ) = +1 $\phi \in [180^{\circ} - 360^{\circ}] \Rightarrow$ SignQ _f (ϕ) = -1	Reactive power sign Q _f – reactive power (by phases) φ – power angle
$\mathbf{S}_{\mathrm{f}} = \mathbf{U}_{\mathrm{f}} \cdot \mathbf{I}_{\mathrm{f}}$	Apparent power by phases U _f – phase voltage I _f – phase current
$S_t = S_1 + S_2 + S_3$	Total apparent power S _t – apparent power by phases
$Q_{f} = \operatorname{Sign}Q_{f}(\varphi) \cdot \sqrt{S_{f}^{2} - P_{f}^{2}}$	Reactive power by phases S _f – apparent power by phases P _f – active power by phases
$Q_f = \frac{1}{N} \cdot \sum_{n=1}^{N} \left(u_{f_n} \times i_{f_{[n+N/4]}} \right)$	Reactive power by phases (displacement method) N – a number of samples in a period n – sample number ($0 \le n \le N$) f – phase designation
$\mathbf{Q}_{\mathrm{t}} = \mathbf{Q}_{\mathrm{1}} + \mathbf{Q}_{\mathrm{2}} + \mathbf{Q}_{\mathrm{3}}$	Total reactive power Q _t – reactive power by phases
$\varphi_s = \arctan 2(P_t, Q_t)$ $\varphi_s = [-180^\circ, 179, 99^\circ]$	Total power angle P _t – total active power Q _t – total reactive power
$PF = \frac{ P }{S}$	Distortion power factor P – active power S –apparent power

THD, TDD

$I_{f}THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} {I_{n}}^{2}}}{I_{1}} \cdot 100$	Current THD I ₁ – value of first harmonic n – number of harmonic
$U_{f}THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} U_{fn}^{2}}}{U_{f1}} \cdot 100$	Phase voltage THD U ₁ – value of first harmonic n – number of harmonic
$U_{ff}THD(\%) = \frac{\sqrt{\sum_{n=2}^{63} U_{ffn}^{2}}}{U_{ff_{1}}} \cdot 100$	Phase-to-phase voltage THD U ₁ – value of first harmonic n – number of harmonic

Energy

Price in tariff = Price $\cdot 10^{\text{Tarif priceexponent}}$	Total exponent of tariff price and energy price in all tariffs
---	--

PE Ljubljana Stegne 21 SI-1000 , Ljubljana Phone: + 386 1 513 10 00

Iskra IP, d.o.o. Metliška cesta 8 SI-8333 , Semič Phone: +386 7 384 94 54

lskra Sistemi - M dooel Ul, Dame Gruev br. 16/5 kat 1000 , Skopje Phone: +389 75 444 498

PE Kondenzatorji Vajdova ulica 71 SI-8333 , Semič Phone: +386 7 38 49 200

Iskra Lotrič, d.o.o. Otoče 5a SI-4244, Podnart Phone: +386 4 535 91 68

Iskra Commerce, d.o.o. Hadži Nikole Živkoviča br. 2 11000, Beograd Phone: +381 11 328 10 41

PE MIS Ljubljanska c. 24a SI-4000 , Kranj Phone: +386 4 237 21 12

Iskra ODM, d.o.o. Otoče 5a 4244, Podnart Phone: +386 4 237 21 96

lskra Hong Kong Ltd. 33 Canton Road, T.S.T. 1705, China HK City Phone: +852 273 00 917 +852 273 01 020 PE Baterije in potenciometri Šentvid pri Stični 108 SI-1296 , Šentvid pri Stični Phone: +386 1 780 08 00

lskra STIK, d.o.o. Ljubljanska cesta 24a SI-4000, Kranj Phone: +386 4 237 22 33 PE Galvanotehnika Glinek 5 SI-1291 , Škofljica Phone: +386 1 366 80 50

Iskra Tela L, d.o.o. Omladinska 66 78250 , Laktaši Phone: +387 51 535 890

Published by Iskra, d.o.o. • Subject to change without notice • Version 5.00 March 2019• EN K22.496.520